Calibration of temperature sensitivity coefficient of fiber Bragg grating at ultra-low temperature
|更新时间:2023-05-10
|
Calibration of temperature sensitivity coefficient of fiber Bragg grating at ultra-low temperature
Optics and Precision EngineeringPages: 1-7(2023)
作者机构:
武汉理工大学 光纤传感技术国家工程实验室,湖北 武汉 430070
作者简介:
基金信息:
DOI:
CLC:TN253;TP212
Received:26 February 2021,
Revised:09 April 2021,
Published Online:10 May 2023,
稿件说明:
移动端阅览
金凯,丁莉芸,郭会勇等.超低温条件下光纤光栅温敏系数标定[J].光学精密工程,
JIN Kai,DING Li-yun,GUO Hui-yong,et al.Calibration of temperature sensitivity coefficient of fiber Bragg grating at ultra-low temperature[J].Optics and Precision Engineering,
JIN Kai,DING Li-yun,GUO Hui-yong,et al.Calibration of temperature sensitivity coefficient of fiber Bragg grating at ultra-low temperature[J].Optics and Precision Engineering,DOI:10.37188/OPE..0001
Calibration of temperature sensitivity coefficient of fiber Bragg grating at ultra-low temperature
In order to solve the reliability problem of grating temperature-sensitive coefficient (K
B,T
) calibration in the ultra-low temperature environment, the reference thermometer probe and fiber Bragg grating sensor were encapsulated in the self-designed non-contact liquid nitrogen cooling temperature measuring mold, and the calibration experiments were carried out in a wide range of ultra-low temperatures ranging from 93-293 K, and the thermal sensitivity coefficient of bare grid and thermal expansion coefficient of coating are used to verify the credibility of the experimental design. Experimental results indicate that the maximum initial temperature change rate of the reference thermometer is 1.8 K/min, which effectively reduces the temperature change rate of the temperature measuring mold and improves the temperature consistency between the reference thermometer and the labeled grating. The test results are in good agreement with the results of the comparable literature. The temperature sensitivity of bare gate decreases from 9.18 pm/K@293K to 2.19 pm/K@93K due to its low temperature nonlinearity, the thermal expansion coefficient of organic modified ceramic (ORMOCER) is 3.7×10
-6
K
-1
at room temperature. The temperature sensitivity coefficient of ORMOCER coating with one-side thickness of 50μm is 4.43 pm/K. At 93 K, K
B,T
= 7.17 pm/K, the temperature sensitivity coefficient and linearity of the coating grating are significantly improved.
关键词
Keywords
references
LATKA I , ECKE W , HÖFER B , et al . Fiber optic sensors for the monitoring of cryogenic spacecraft tank structures [C]// Proc SPIE 5579, Photonics North 2004: Photonic Applications in Telecommunications, Sensors, Software, and Lasers , 2004 , 5579 : 195 - 204 . doi: 10.1117/12.567353 http://dx.doi.org/10.1117/12.567353
MIZUTANI T , TAKEDA N , TAKEYA H . On-board strain measurement of a cryogenic composite tank mounted on a reusable rocket using FBG sensors [J]. Structural Health Monitoring , 2006 , 5 ( 3 ): 205 - 214 . doi: 10.1177/1475921706058016 http://dx.doi.org/10.1177/1475921706058016
OH M C , SEO J K , KIM K J , et al . In-situ strain monitoring in liquid containers of LNG transporting carriers [C]// Optical Engineering + Applications . Proc SPIE 7070 , Optical Technologies for Arming, Safing, Fuzing, and Firing IV, San Diego , California , USA . 2008 , 7070 : 70700X .
ZHANG H J , WANG Q L , WANG H S , et al . Fiber Bragg grating sensor for strain sensing in low temperature superconducting magnet [J]. IEEE Transactions on Applied Superconductivity , 2010 , 20 ( 3 ): 1798 - 1801 . doi: 10.1109/tasc.2010.2042693 http://dx.doi.org/10.1109/tasc.2010.2042693
KERSEY A D , DAVIS M A , PATRICK H J , et al . Fiber grating sensors [J]. Journal of Lightwave Technology , 1997 , 15 ( 8 ): 1442 - 1463 . doi: 10.1109/50.618377 http://dx.doi.org/10.1109/50.618377
GUPTA S , MIZUNAMI T , YAMAO T , et al . Fiber Bragg grating cryogenic temperature sensors [J]. Applied Optics , 1996 , 35 ( 25 ): 5202 - 5205 . doi: 10.1364/ao.35.005202 http://dx.doi.org/10.1364/ao.35.005202
ZHANG H J , DENG F P , XIAO J , et al . Study on temperature response of fiber Bragg grating at liquid helium temperature [J]. Journal of OptoelectronicsLaser , 2008 , 19 ( 5 ): 581 - 583 . (in Chinese)
GUO Z S , FENG J M , WANG H . Cryogenic temperature characteristics of the fiber Bragg grating sensors [J]. Cryogenics , 2012 , 52 ( 10 ): 457 - 460 . doi: 10.1016/j.cryogenics.2012.04.012 http://dx.doi.org/10.1016/j.cryogenics.2012.04.012
HABISREUTHER T , HAILEMICHAEL E , ECKE W , et al . ORMOCER coated fiber-optic Bragg grating sensors at cryogenic temperatures [J]. IEEE Sensors Journal , 2012 , 12 ( 1 ): 13 - 16 . doi: 10.1109/jsen.2011.2108280 http://dx.doi.org/10.1109/jsen.2011.2108280
REID M B , OZCAN M . Temperature dependence of fiber optic Bragg gratings at low temperatures [C]// 1998 : 237 - 240 . doi: 10.1117/1.601610 http://dx.doi.org/10.1117/1.601610
DENG F P , SHAO J Y , HUANG G J , et al . Study on temperature characteristics of optical fiber Bragg grating under the 77 K environment [J]. Journal of OptoelectronicsLaser , 2007 , 18 ( 4 ): 404 - 406 . (in Chinese)
GUO H Y , TANG J G , LI X F , et al . On-line writing identical and weak fiber Bragg grating arrays [J]. Chinese Optics Letters , 2013 , 11 ( 3 ): 030602 . doi: 10.3788/col201311.030602 http://dx.doi.org/10.3788/col201311.030602
SU F . Influence of coating parameters on temperature sensitivity of FBG [J]. Optical Fiber & Electric Cable and Their Applications , 2009 ( 5 ): 29 - 31 . (in Chinese)