浏览全部资源
扫码关注微信
复旦大学 电子工程系 上海,200433
收稿日期:2005-11-30,
修回日期:2006-01-24,
网络出版日期:2006-06-30,
纸质出版日期:2006-06-30
移动端阅览
汪源源, 孙志民, 蔡 铮. 改进的奇异值分解法估计图像点扩散函数[J]. 光学精密工程, 2006,14(3):520-525.
WANG Yuan-yuan, SUN Zhi-Min, CAI Zheng. Estimation of PSF of image system using modified SVD method[J]. Optics and precision engineering, 2006, 14(3): 520-525.
为了提高图像复原算法的性能
提出了一种改进的奇异值分解法估计图像的点扩散函数。从图像的退化离散模型出发
对图像进行逐层分块奇异值分解
并自动选取奇异值重组阶数以减少噪声对估计的影响。利用理想图像奇异值向量平均能谱指数模型
估计点扩散函数奇异值向量的频谱
再反傅里叶变换得到其时域结果。实验结果表明
该方法能在不同信噪比情况下估计成像系统的点扩散函数
估计结果比原有估计方法有所提高
有望为图像复原算法的预处理提供一种有效的手段。
To improve the performance of image restoration algorithms
a modified Singular Value Decomposition(SVD) method was proposed to estimate the Point Spread Function (PSF) of an imaging system. Using the discrete image degradation model
a block-based SVD filter scheme was applied for the image denoising with an automatically determined singular value rank. After the spectra of PSF singular vectors were estimated under an exponential model for the averaged spectra of un-degraded image singular vectors
the IFFT was used to get the time-domain estimation of the PSF. The experimental results show that this proposed method can be applied to estimate the PSF of the imaging system under a wide SNR range and its performance is better than the original method. It may be used as an effective method for the image preprocessing in image restoration problems.
. 陈迎娟, 张之江, 张智强. CCD像素响应不均匀性的校正方法[J]. 光学精密工程, 2004, 12(2): 216-220. CHEN Y J, ZHANG Z J, ZHANG Z G. Correction of CCD pixel nonuniformity[J]. Optics and Precision Engineering, 2004, 12(2): 216-220. (in Chinese)
. 余帆, 李德华,薛雷. 光学和图像处理设备中的电磁兼容性设计[J]. 光学精密工程, 2004, 12(1): 100-106. YU F, LI D H, XUE L. Electromagnetic compatibility design in optics and image processing equipment[J]. Optics and Precision Engineering, 2004, 12(1): 100-106. (in Chinese)
. CANNON M. Blind deconvolution of spatially invariant image blurs with phase[J]. IEEE Trans. Acoustics, Speech and Signal Processing, 1976, 24(1): 58-63.
. TEKALP A M, KAUFMAN H, WOODS J W. Identification of image and blur parameters for the restoration of noncausal blurs[J]. IEEE Trans. Acoustics, Speech and Signal Processing, 1986, 34(4): 963-972.
. TEKALP A M, KAUFMAN H. On statistical identification of a class of linear space-invariant image blurs using non-minimum-phase ARMA models[J]. IEEE Trans. Acoustics, Speech and Signal Processing, 1988, 36(8): 1360-1363.
. OZKAN M K, ERDEM A T, SEZAN M I, et al. Efficient multiframe Wiener restoration of blurred and noisy image sequences[J]. IEEE Trans. Image Processing, 1992, 1(5): 453-476.
. DEVCIC Z, LONCARIC S. Simultaneous estimation of PSF and global frame shifts at lower S/N ratios . IEEE Proc. Image and Signal Processing and Analysis, Pula, 2000.
. DEVCIC Z, LONCARIC S. Blur identification using averaged spectra of degraded image singular vectors . IEEE Proc. Acoustics, Speech and Signal Processing, Turkey, 2000.
. KONSTANTINIDES K,NATARAJAN B,YOVANOF G S. Noise estimation and filtering using block-based singular value decomposition[J]. IEEE Trans. Image Processing, 1997, 6(4): 479-483.
0
浏览量
574
下载量
12
CSCD
关联资源
相关文章
相关作者
相关机构