浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2.中国科学院大学,北京 100039
3.吉林省 智能波前传感与控制重点实验室,吉林 长春 130033
E-mail: liuxinyue@ciomp.ac.cn
网络出版日期:2023-02-13,
移动端阅览
安其昌,王鹍,刘欣悦等.基于条纹传感的大口径透镜检测[J].光学精密工程,
An Qichang,Wang Kun,Liu Xinyue,et al.Detection method of large aperture lens based on fringe tracking[J].Optics and Precision Engineering,
安其昌,王鹍,刘欣悦等.基于条纹传感的大口径透镜检测[J].光学精密工程, DOI:10.37188/OPE.XXXXXXXX.0001
An Qichang,Wang Kun,Liu Xinyue,et al.Detection method of large aperture lens based on fringe tracking[J].Optics and Precision Engineering, DOI:10.37188/OPE.XXXXXXXX.0001
为实现大口径透镜组的高质量集成,亟需一套透射波前检测系统,可实现米级跨度上的微米级精度检测。在此,针对大口径透射波前质量检测难题,通过结合非窄带干涉与条纹跟踪,获得元件相对倾斜以及支撑结构所引入的系统波前变化。首先,基于光纤互联架构,设计了子孔径分时复用测系统,其次,建立了斜率测量与最终系统波前的映射关系,分析了斜率重建过程对不同空间频率波前的影响。最后,利用桌面实验系统,针对探测原理进行了验证测试,在测试波长1 550纳米下,干涉感知信噪比优于15 dB,测量范围优于5微米,探测精度优于0.5微米。基于本文所提出的方法可实现大口径透镜透射波前大范围、高鲁棒、高精度的检测,对于未来大口径大视场望远镜的建设,具有十分重要的意义。
In order to achieve high-quality integration of large aperture lens groups, a transmission wavefront detection system is urgently needed, which can achieve micron level accuracy detection on meter scale span. Here,To solve the problem of large aperture transmission wavefront quality detection, the relative tilt of components and the change of system wavefront introduced by the support structure are obtained by combining non narrowband interference with fringe tracking. Firstly, based on the optical fiber interconnection architecture, the sub aperture time-sharing multiplexing measurement system is designed. Secondly, the mapping relationship between the slope measurement and the final system wavefront is established, and the influence of the slope reconstruction process on the wavefront of different spatial frequencies is analyzed. Finally, the desktop experimental system was used to verify the detection principle. At the test wavelength of 1550nm, the interference sensing SNR was better than 15dB, the measurement range was better than 5 μ m, and the detection accuracy was better than 0.5 μ m. Based on the method proposed in this paper, the large aperture lens transmission wavefront can be detected in a large range, with high robustness and high accuracy, which is of great significance for the construction of large aperture large field of view telescopes in the future.
ANGELI G Z , DIERICKX P , NEILL D , et al . Overview of the LSST active optics system [C]. Modeling, Systems Engineering, and Project Management for Astronomy VI. SPIE 2014 , 9150 : 91500G . doi: 10.1117/12.2056553 http://dx.doi.org/10.1117/12.2056553
郭宁馨 , 张景旭 , 刘昌华 , 等 . 大口径大视场望远镜探测器平面度检测方法综述 [J]. 激光与红外 , 2020 , 50 ( 4 ): 387 - 395 . doi: 10.3969/j.issn.1001-5078.2020.04.001 http://dx.doi.org/10.3969/j.issn.1001-5078.2020.04.001
GUO N X , ZHANG J X , LIU CH H , et al . Overview of CCDs flatness test method for large aperture and wide-field telescope [J]. Laser & Infrared , 2020 , 50 ( 4 ): 387 - 395 . (in Chinese) . doi: 10.3969/j.issn.1001-5078.2020.04.001 http://dx.doi.org/10.3969/j.issn.1001-5078.2020.04.001
AN Q C , WU X X , LIN X D , et al . Large survey camera collimation and alignment at the observation site by curvature sensing [J]. Optik , 2021 , 242 : 167273 . doi: 10.1016/j.ijleo.2021.167273 http://dx.doi.org/10.1016/j.ijleo.2021.167273
AN Q C , WU X X , LIN X D , et al . Alignment of DECam-like large survey telescope for real-time active optics and error analysis [J]. Optics Communications , 2021 , 484 : 126685 . doi: 10.1016/j.optcom.2020.126685 http://dx.doi.org/10.1016/j.optcom.2020.126685
ROODMAN A , REIL K , DAVIS C . Wavefront sensing and the active optics system of the dark energy camera [C]. SPIE Proceedings, Ground-based and Airborne Telescopes V. Montréal, Quebec, Canada. SPIE , 2014 , 9145 : 914516 . doi: 10.1117/12.2056904 http://dx.doi.org/10.1117/12.2056904
安其昌 , 姜晰文 , 李洪文 , 唐境 . 基于差分传递函数法的大口径平面镜检测 [J]. 中国光学(中英文) , 2022 , 15 ( 05 ): 992 - 999 . doi: 10.37188/co.2022-0122 http://dx.doi.org/10.37188/co.2022-0122
AN Q CH , JIANG X W , LI H W , et al . Detection of large aperture flat mirror based on the differential optics transfer function method [J]. Chinese Optics , 2022 , 15 ( 5 ): 992 - 999 . (in Chinese) . doi: 10.37188/co.2022-0122 http://dx.doi.org/10.37188/co.2022-0122
姜晰文 , 赵金宇 , 吕天宇 , 等 . 大口径主焦点式光学系统的设计与装调 [J]. 光学 精密工程 , 2022 , 30 ( 23 ): 2987 - 2994 . doi: 10.37188/ope.20223023.2987 http://dx.doi.org/10.37188/ope.20223023.2987
JIANG X W , ZHAO J Y , LÜ T Y , et al . Design and alignment of large-aperture prime focus optical system [J]. Opt. Precision Eng. , 2022 , 30 ( 23 ): 2987 - 2994 . (in Chinese) . doi: 10.37188/ope.20223023.2987 http://dx.doi.org/10.37188/ope.20223023.2987
WESTORT K K . Design and fabrication of high performance relay lenses [C]. SPIE Proceedings", "Optical Systems Engineering IV. Cambridge. SPIE , 1985 , 518 : 40 - 47 . doi: 10.1117/12.945177 http://dx.doi.org/10.1117/12.945177
LANGEHANENBERG P , DUMITRESCU E , HEINISCH J , et al . Automated measurement of centering errors and relative surface distances for the optimized assembly of micro-optics [C]. SPIE Proceedings, Micromachining and Microfabrication Process Technology XVI . San Francisco, California. SPIE , 2011 , 7926 : 79260E . doi: 10.1117/12.874628 http://dx.doi.org/10.1117/12.874628
LANGEHANENBERG P , RUPRECHT A , OFF D , et al . Highly accurate measurement of lens surface distances within optical assemblies for quality testing [C]. SPIE Proceedings, Optical System Alignment, Tolerancing, and Verification VII . San Diego, California, USA. SPIE , 2013 , 8844 : 88444F . doi: 10.1117/12.2024157 http://dx.doi.org/10.1117/12.2024157
WILHELM R , COURTEVILLE A , GARCIA F . A novel low coherence fibre optic interferometer for position and thickness measurements with unattained accuracy [C]. SPIE Proceedings , Optical Sensing II. Strasbourg, France. SPIE , 2006 , 6189 : 618918 . doi: 10.1117/12.663654 http://dx.doi.org/10.1117/12.663654
ZHAO W Q , SUN R D , QIU L R , et al . Lenses axial space ray tracing measurement [J]. Optics Express , 2010 , 18 ( 4 ): 3608 - 3617 . doi: 10.1364/oe.18.003608 http://dx.doi.org/10.1364/oe.18.003608
黄郑重 , 曹良才 . 面向高通量的多通道复用数字全息成像技术 [J]. 中国光学(中英文) , 2022 , 15 ( 06 ): 1182 - 1193 . doi: 10.37188/co.2022-0070 http://dx.doi.org/10.37188/co.2022-0070
HUANG ZH ZH , CAO L C . Multi-channel multiplexing digital holographic imaging for high throughput [J]. Chinese Optics , 2022 , 15 ( 6 ): 1182 - 1193 . (in Chinese) . doi: 10.37188/co.2022-0070 http://dx.doi.org/10.37188/co.2022-0070
HILWEG C , SHADMANY D , WALTHER P , et al . Limits and prospects for long-baseline optical fiber interferometry [J]. Optica , 2022 , 9 ( 11 ): 1238 - 1252 . doi: 10.1364/optica.470430 http://dx.doi.org/10.1364/optica.470430
MARTINOD M A , MOURARD D , BÉRIO P , et al . Fibered visible interferometry and adaptive optics: friend at CHARA [J]. Astronomy & Astrophysics , 2018 , 618 : A153 . doi: 10.1051/0004-6361/201731386 http://dx.doi.org/10.1051/0004-6361/201731386
PERRIN G , WOILLEZ J , LAI O , et al . Interferometric coupling of the Keck telescopes with single-mode fibers [J]. Science , 2006 , 311 ( 5758 ): 194 . doi: 10.1126/science.1120249 http://dx.doi.org/10.1126/science.1120249
COLAVITA M M , WIZINOWICH P L , AKESON R L , et al . The keck interferometer [J]. Publications of the Astronomical Society of the Pacific , 2013 , 125 ( 932 ): 1226 - 1264 .
GONTIE F , WOILLEZ J , SCHUHLER N , et al . VLT interferometer upgrade for the 2nd generation of interferometric instruments [C]. SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9907, Optical and Infrared Interferometry and Imaging V , Edinburgh, United Kingdom . 2016 , 9907 : 528 - 538 .
0
浏览量
654
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构