1.武汉理工大学 低碳燃烧与动力研究中心,湖北 武汉 430070
2.佛山仙湖实验室 国家能源氢能及氨氢融合新能源技术重点实验室,广东 佛山 528200
3.中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春130033
[ "万 涛(2001-),男,江西九江人,硕士研究生,2023年于武汉理工大学获得学士学位,主要方向为基于中红外激光吸收光谱技术的燃烧诊断方法研究。E-mail: 300073@whut.edu.cn" ]
[ "马柳昊(1990-),男,湖北荆州人,博士,副教授,博士生导师,分别于2012年、2015年在华中科技大学获得学士、硕士学位,于2019年在香港中文大学获得博士学位,主要研究方向为大载荷、强辐射、非均匀燃烧流场光学诊断技术,新型激光光谱高温传感技术和工业激光传感器与激光雷达设计。E-mail: liuhaoma@whut.edu.cn" ]
收稿:2025-07-14,
修回:2025-08-18,
纸质出版:2025-09-25
移动端阅览
万涛,陆盛曜,马柳昊等.基于视线效应修正的中红外激光吸收光谱对冲扩散火焰温度测量方法[J].光学精密工程,2025,33(18):2833-2843.
WAN Tao,LU Shengyao,MA Liuhao,et al.Line-of-sight effect-corrected mid-infrared laser absorption spectroscopy for temperature measurement in counterflow diffusion flames[J].Optics and Precision Engineering,2025,33(18):2833-2843.
万涛,陆盛曜,马柳昊等.基于视线效应修正的中红外激光吸收光谱对冲扩散火焰温度测量方法[J].光学精密工程,2025,33(18):2833-2843. DOI: 10.37188/OPE.20253318.2833. CSTR: 32169.14.OPE.20253318.2833.
WAN Tao,LU Shengyao,MA Liuhao,et al.Line-of-sight effect-corrected mid-infrared laser absorption spectroscopy for temperature measurement in counterflow diffusion flames[J].Optics and Precision Engineering,2025,33(18):2833-2843. DOI: 10.37188/OPE.20253318.2833. CSTR: 32169.14.OPE.20253318.2833.
精准测量对冲扩散火焰温度对于构建高保真燃烧化学反应机理、揭示污染物生成机制以及开发高效清洁燃烧技术,具有重要的理论指导意义和工程应用价值。激光吸收光谱技术(Laser Absorption Spectroscopy, LAS)作为一种广泛应用的非接触式测温手段,近年来受到广泛关注。然而,由于吸收路径上热力学和化学参数的非均匀分布,传统基于视线(Line-of-S
ight, LOS)积分的测量方法在获取火焰温度信息时存在较大不确定性,影响其测量的准确性和可靠性。尽管传统的层析重建方法和多谱线轮廓拟合技术能够一定程度上恢复火焰中心的温度信息,但这类方法通常实现过程复杂、计算耗时,难以满足高保真测试诊断的需求。本文提出了一种视线效应修正的中红外激光吸收光谱测温方法,该方法通过计算流体动力学(Computational Fluid Dynamics, CFD)和光谱数值模拟定量不同火焰位置非均匀性对LOS测温结果的偏差影响,最终实现LOS测温修正。为验证该方法,基于H
2
O分子吸收光谱在2.5 μm附近的强吸收谱线对开展系统LOS测温实验,并对比层析重建测量结果和耦合详细化学反应机理的仿真结果。实验结果表明本文提出的温度修正方法对不同燃料燃烧对冲扩散火焰的LOS测温结果可靠性有明显提升,与层析重建实验和CFD结果相比,相对结果差异由修正前的10%~20%降至5%以内,且大部分测量位置小于2%。本文提出的温度修正方法可大幅提高LOS测量方法的可靠性,同时省去了耗时的机械式层析扫描步骤,为对冲扩散火焰温度的快速、准确测量提供了一种有效解决方案。
Accurate measurement of the temperature in counterflow diffusion flame is crucial for constructing high-fidelity combustion chemical reaction mechanisms, revealing pollutant formation processes, and developing efficient and clean combustion technologies. This holds significant theoretical and engineering application value. Laser Absorption Spectroscopy (LAS), a widely used non-contact temperature measurement technique, has garnered considerable attention in recent years. However, due to the non-uniform distribution of thermodynamic and chemical parameters along the absorption path, traditional Line-of-Sight (LOS) integration-based measurement methods exhibit significant uncertainties when acquiring flame temperature information, affecting their accuracy and reliability. While traditional tomography reconstruction methods and multi-line profile fitting techniques can, to some extent, recover the temperature information of the flame center, these approaches are often complex and computationally intensive, making them difficult to meet the demands of high-fidelity diagnostic testing. This paper proposed a line-of-sight (LOS) temperature measurement method using mid-infrared laser absorption spectroscopy, incorporating a correction strategy for LOS effects. The strategy quantified the deviation in the LOS temperature measurements caused by the non-uniformities at different flame positions, based on computational fluid dynamics (CFD) and spectral nu
merical simulations. The correction was applied to the LOS temperature measurements. To validate this strategy, systematic LOS temperature measurements were conducted using the strong absorption band of H
2
O molecules around 2.5 μm, with comparisons made against tomography reconstruction measurements and CFD simulation results, which incorporate detailed chemical reaction mechanisms. Experimental results indicate that the proposed temperature correction strategy significantly enhances the reliability of LOS temperature measurements for counterflow diffusion flames with various fuels. Compared to tomography reconstruction experiments and CFD results, the relative differences in the measurements were reduced from 10%~20% before correction to within 5%, with most measurement locations showing discrepancies of less than 2%. The temperature correction strategy presented in this study substantially improves the reliability of the LOS measurement method, while eliminating the time-consuming mechanical tomography scanning steps. This provides an effective solution for the rapid and accurate measurement of counterflow diffusion flames temperatures.
EGOLFOPOULOS F N , HANSEN N , JU Y , et al . Advances and challenges in laminar flame experiments and implications for combustion chemistry [J]. Progress in Energy and Combustion Science , 2014 , 43 : 36 - 67 . doi: 10.1016/j.pecs.2014.04.004 http://dx.doi.org/10.1016/j.pecs.2014.04.004
BALLESTER J , GARCÍA-ARMINGOL T . Diagnostic techniques for the monitoring and control of practical flames [J]. Progress in Energy and Combustion Science , 2010 , 36 ( 4 ): 375 - 411 . doi: 10.1016/j.pecs.2009.11.005 http://dx.doi.org/10.1016/j.pecs.2009.11.005
JIANG P , ZHOU M X , WEN D X , et al . An experimental multiparameter investigation on the thermochemical structures of benchmark ethylene and propane counterflow diffusion flames and implications to their numerical modeling [J]. Combustion and Flame , 2021 , 234 : 111622 . doi: 10.1016/j.combustflame.2021.111622 http://dx.doi.org/10.1016/j.combustflame.2021.111622
WEN D X , WANG Y . Spatially and temporally resolved temperature measurements in counterflow flames using a single interband cascade laser [J]. Optics Express , 2020 , 28 ( 25 ): 37879 - 37902 . doi: 10.1364/oe.411278 http://dx.doi.org/10.1364/oe.411278
WANG Y , CHUNG S H . Soot formation in laminar counterflow flames [J]. Progress in Energy and Combustion Science , 2019 , 74 : 152 - 238 . doi: 10.1016/j.pecs.2019.05.003 http://dx.doi.org/10.1016/j.pecs.2019.05.003
HEITOR M V , MOREIRA A L N . Thermocouples and sample probes for combustion studies [J]. Progress in Energy and Combustion Science , 1993 , 19 ( 3 ): 259 - 278 . doi: 10.1016/0360-1285(93)90017-9 http://dx.doi.org/10.1016/0360-1285(93)90017-9
SHADDIX C R , AMERICAN SOCIETY OF MECHANICAL E . Correcting thermocouple me-asurements for radiation loss: a critical review [C]. Proceedings of the 1999 National Heat Transfer Conference : August 15- 17 , 1999, Albuquereuq , New Mexico , 1999.
FAROOQ A , ALQUAITY A B S , RAZA M , et al . Laser sensors for energy systems and process industries: Perspectives and directions [J]. Progress in Energy and Combustion Science , 2022 , 91 : 100997 . doi: 10.1016/j.pecs.2022.100997 http://dx.doi.org/10.1016/j.pecs.2022.100997
聂伟 , 许振宇 , 阚瑞峰 , 等 . 可调谐二极管激光吸收光谱技术测量低温流场水汽露点温度 [J]. 光学 精密工程 , 2018 , 26 ( 8 ): 1862 - 1869 . doi: 10.3788/ope.20182608.1862 http://dx.doi.org/10.3788/ope.20182608.1862
NIE W , XU Z Y , KAN R F , et al . Measurement of low water vapor dew-point temperature based on tunable diode laser absorption spectroscopy [J]. Opt. Precision Eng. , 2018 , 26 ( 8 ): 1862 - 1869 . (in Chinese) . doi: 10.3788/ope.20182608.1862 http://dx.doi.org/10.3788/ope.20182608.1862
聂伟 , 阚瑞峰 , 杨晨光 , 等 . 可调谐二极管激光吸收光谱技术的应用研究进展 [J]. 中国激光 , 2018 , 45 ( 9 ): 9 - 29 . doi: 10.3788/cjl201845.0911001 http://dx.doi.org/10.3788/cjl201845.0911001
NIE W , KAN R F , YANG C G , et al . Research progress on the application of tunable diode laser absorption spectroscopy [J]. Chinese Journal of Lasers , 2018 , 45 ( 9 ): 9 - 29 . (in Chinese) . doi: 10.3788/cjl201845.0911001 http://dx.doi.org/10.3788/cjl201845.0911001
曹章 , 高欣 , 陆方皞 , 等 . 激光吸收光谱层析成像及复杂燃烧场动态监测 [J]. 中国激光 , 2022 , 49 ( 19 ): 117 - 138 . doi: 10.3788/CJL202249.1904002 http://dx.doi.org/10.3788/CJL202249.1904002
CAO Z , GAO X , LU F H , et al . Laser absorption spectral tomography for dynamical combustion monitoring [J]. Chinese Journal of Lasers , 2022 , 49 ( 19 ): 117 - 138 . (in Chinese) . doi: 10.3788/CJL202249.1904002 http://dx.doi.org/10.3788/CJL202249.1904002
HUANG W J , GAO G Z , ZHANG M K , et al . Simultaneous detection of soot, temperature, and C 2 H 2 in laminar premixed flames using a multi-pass diode laser absorption spectrometer [J]. Optics Express , 2024 , 32 ( 23 ): 41445 . doi: 10.1364/oe.539731 http://dx.doi.org/10.1364/oe.539731
李金义 , 赵航 , 杨晓涛 , 等 . 激光吸收光谱2D和3D成像测量技术及其应用研究进展 [J]. 激光与光电子学进展 , 2022 , 59 ( 19 ): 71 - 84 . doi: 10.3788/LOP202259.1900005 http://dx.doi.org/10.3788/LOP202259.1900005
LI J Y , ZHAO H , YANG X T , et al . Research and application progress on laser absorption spectroscopy technology for 2D and 3D imaging measurement [J]. Laser & Optoelectronics Progress , 2022 , 59 ( 19 ): 71 - 84 . (in Chinese) . doi: 10.3788/LOP202259.1900005 http://dx.doi.org/10.3788/LOP202259.1900005
陆盛曜 , 马柳昊 , 张健鹏 , 等 . 中红外层析吸收光谱技术应用于甲烷掺氨层流预混火焰温度测量 [J]. 光学 精密工程 , 2024 , 32 ( 18 ): 2733 - 2743 .
LU S Y , MA L H , ZHANG J P , et al . Temperature measurement in methane-ammonia co-fired laminar premixed flame using mid-infrared laser absorption tomography [J]. Opt. Precision Eng. , 2024 , 32 ( 18 ): 2733 - 2743 . (in Chinese)
WEI C Y , PINEDA D I , GOLDENSTEIN C S , et al . Tomographic laser absorption imaging of combustion species and temperature in the mid-wave infrared [J]. Optics Express , 2018 , 26 ( 16 ): 20944 - 20951 . doi: 10.1364/oe.26.020944 http://dx.doi.org/10.1364/oe.26.020944
WEI C Y , SPEARRIN R M . Four-dimensional laser absorption cinematography of species and temperature dynamics at 2 kHz in reacting flows [J]. Optics Letters , 2024 , 49 ( 1 ): 141 - 144 . doi: 10.1364/ol.512240 http://dx.doi.org/10.1364/ol.512240
CUI B , MA L H , SUN B W , et al . Mid-infrared absorption spectroscopy for in-situ and spatially resolved measurements of nitric oxide in premixed ammonia-methane co-fired flames [J]. Optics Express , 2025 , 33 ( 2 ): 3262 . doi: 10.1364/oe.550463 http://dx.doi.org/10.1364/oe.550463
刘宁博 , 赵逸佳 , 陆盛曜 , 等 . 热化学参数非均匀分布对双色激光吸收光谱测量碳烟火焰温度的影响 [J]. 光学 精密工程 , 2023 , 31 ( 19 ): 2799 - 2808 . doi: 10.37188/ope.20233119.2799 http://dx.doi.org/10.37188/ope.20233119.2799
LIU N B , ZHAO Y J , LU S Y , et al . Influence of non-uniform distributions of thermochemical parameters on measurement of sooting flame temperature by two-color laser absorption spectroscopy [J]. Opt. Precision Eng. , 2023 , 31 ( 19 ): 2799 - 2808 . (in Chinese) . doi: 10.37188/ope.20233119.2799 http://dx.doi.org/10.37188/ope.20233119.2799
WEN D X , MA L H , WANG Y . Effects of thermochemical non-uniformity on line-of-sight laser absorption thermometry in counterflow diffusion flames [J]. Journal of Quantitative Spectroscopy and Radiative Transfer , 2022 , 277 : 107990 . doi: 10.1016/j.jqsrt.2021.107990 http://dx.doi.org/10.1016/j.jqsrt.2021.107990
HANSON RK. , MITCHELL SPEARRIN R , S.GOLDENSTEIN C . Spectroscopy and Optical Diagnostics for Gases [M]. New York : Taylor & Francis , 2002 .
李劲松 . 现代激光光谱技术及应用 [M]. 北京 : 科学出版社 , 2022 : 321 . (in Chinese)
LI J S . Modern Laser Spectroscopy Techniques and Applications [M]. Beijing : Science Press , 2022 : 321 . (in Chinese)
XU L , YAN F W , ZHOU M X , et al . Experimental and soot modeling studies of ethylene counterflow diffusion flames: non-monotonic influence of the oxidizer composition on soot formation [J]. Combustion and Flame , 2018 , 197 : 304 - 318 . doi: 10.1016/j.combustflame.2018.08.011 http://dx.doi.org/10.1016/j.combustflame.2018.08.011
OKAFOR E C , NAITO Y , COLSON S , et al . Experimental and numerical study of the laminar burning velocity of CH 4 -NH 3 -air premixed flames [J]. Combustion and Flame , 2018 , 187 : 185 - 198 . doi: 10.1016/j.combustflame.2017.09.002 http://dx.doi.org/10.1016/j.combustflame.2017.09.002
WEI C Y , PINEDA D I , PAXTON L , et al . Mid-infrared laser absorption tomography for quantitative 2D thermochemistry measurements in premixed jet flames [J]. Applied Physics B , 2018 , 124 ( 6 ): 123 . doi: 10.1007/s00340-018-6984-z http://dx.doi.org/10.1007/s00340-018-6984-z
SHENG G , MA L H , WEN D X , et al . Simultaneous measurements of temperature, CO 2 concentration and soot volume fraction in counterflow diffusion flames using a single mid-infrared laser [J]. Applied Physics B , 2022 , 128 ( 3 ): 62 . doi: 10.1007/s00340-022-07784-0 http://dx.doi.org/10.1007/s00340-022-07784-0
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621
