西安科技大学 陕西省矿山机电装备智能检测与控制重点实验室,陕西 西安 710054
[ "徐冬梅(1987-),女,山东青岛人,博士后,副教授,2012年于哈尔滨工业大学获得硕士学位,2018年于哈尔滨工业大学获得博士学位,现为西安科技大学副教授,主要从事压电俘能和压电精密驱动方面的研究。E-mail: dongmeixu@xust.edu.cn" ]
收稿:2025-08-01,
修回:2025-08-13,
纸质出版:2025-09-25
移动端阅览
徐冬梅,杨阳,于思淼等.力放大式三自由度压电俘能器的设计建模与实验研究[J].光学精密工程,2025,33(18):2899-2913.
XU Dongmei,YANG Yang,YU Simiao,et al.Design, modeling and experimental research on force amplification type three-degree-of-freedom piezoelectric energy harvester[J].Optics and Precision Engineering,2025,33(18):2899-2913.
徐冬梅,杨阳,于思淼等.力放大式三自由度压电俘能器的设计建模与实验研究[J].光学精密工程,2025,33(18):2899-2913. DOI: 10.37188/OPE.20253318.2899. CSTR: 32169.14.OPE.20253318.2899.
XU Dongmei,YANG Yang,YU Simiao,et al.Design, modeling and experimental research on force amplification type three-degree-of-freedom piezoelectric energy harvester[J].Optics and Precision Engineering,2025,33(18):2899-2913. DOI: 10.37188/OPE.20253318.2899. CSTR: 32169.14.OPE.20253318.2899.
为提升单自由度压电俘能器的能量转化效率和拓宽俘能工作方向,结合压电能量转
化机制、多自由度压电俘能器原理和力放大结构原理设计了一款新型三自由度压电俘能器。俘能器由两两正交悬臂梁式俘能器和力放大拉压模式俘能器组合而成。基于MATLAB/Simulink搭建模型进行仿真分析,获得了激励参数与结构参数对系统动态响应的影响。在此基础上制作俘能器的实验样机,通过实验验证了所设计的俘能器在
XYZ
三方向均能有效输出电能,以及结构参数(悬臂梁间距、质量块质量和弹簧刚度)对俘能器性能的影响。实验表明
X,Y
方向在电阻为15 kΩ时,输出功率为2.924 mW,可点亮22个LED二极管,
Z
方向在电阻为40 kΩ时,输出功率为4.871 mW,可点亮33个LED二极管。结果表明在不同振动方向下俘能器均能实现稳定电能输出,为低功耗无线传感器提供能源支持的可行性。研究成果为新型多自由度压电俘能器的设计提供了一定理论指导。
To improve the energy conversion efficiency of a single-degree-of-freedom (SDOF) piezoelectric energy harvester and broaden its operational direction, a novel three-degree-of-freedom (3-DOF) piezoelectric energy harvester had been designed by integrating the piezoelectric energy conversion mechanism, multi-degree-of-freedom piezoelectric harvesting principles, and force amplification structures. The proposed harvester had consisted of orthogonally arranged cantilever-beam harvesters and a force-amplified compression-tension mode harvester. A simulation model had been established using MATLAB/Simulink to analyze the effects of excitation and structural parameters on the system’s dynamic response. Based on the simulation, a prototype had been fabricated and experimentally validated. The results had demonstrated that the harvester could effectively generate electrical energy along the
X
,
Y
, and
Z
directions, with structural parameters (cantilever spacing, proof mass, and spring stiffness) significantly influencing its performance. Experiments showed that the
X
and
Y
directions achieved an output power of 2.924 mW at a load resistance of 15 kΩ, capable of illuminating 22 LEDs, while the Z direction delivered 4.871 mW at 40 kΩ, powering 33 LEDs. The findings confirm the harvester’s stable energy output across different vibration directions, demonstrating its feasibility for powering low-power wireless sensors. This study provides theoretical guidance fo
r the design of novel multi-degree-of-freedom piezoelectric energy harvesters.
ANG L M , SENG K P . Big sensor data applications in urban environments [J]. Big Data Research , 2016 , 4 : 1 - 12 . doi: 10.1016/j.bdr.2015.12.003 http://dx.doi.org/10.1016/j.bdr.2015.12.003
SAH D K , AMGOTH T . Renewable energy harvesting schemes in wireless sensor networks: a Survey [J]. Information Fusion , 2020 , 63 : 223 - 247 . doi: 10.1016/j.inffus.2020.07.005 http://dx.doi.org/10.1016/j.inffus.2020.07.005
褚金奎 , 林木音 , 王寅龙 , 等 . 偏振光传感器的无人船导航与编队应用 [J]. 光学 精密工程 , 2020 , 28 ( 8 ): 1661 - 1669 . doi: 10.3788/OPE.20202808.1661 http://dx.doi.org/10.3788/OPE.20202808.1661
CHU J K , LIN M Y , WANG Y L , et al . Application of polarization sensor to unmanned surface vehicle navigation and formation [J]. Opt. Precision Eng. , 2020 , 28 ( 8 ): 1661 - 1669 . (in Chinese) . doi: 10.3788/OPE.20202808.1661 http://dx.doi.org/10.3788/OPE.20202808.1661
王鑫 , 孙立宁 , 施云波 . 微型多参数水质传感器芯片的设计及应用 [J]. 光学 精密工程 , 2020 , 28 ( 10 ): 2215 - 2226 . doi: 10.37188/OPE.20202810.2215 http://dx.doi.org/10.37188/OPE.20202810.2215
WANG X , SUN L N , SHI Y B . Design and application of miniature multi-parameter water quality sensor chip [J]. Opt. Precision Eng. , 2020 , 28 ( 10 ): 2215 - 2226 . (in Chinese) . doi: 10.37188/OPE.20202810.2215 http://dx.doi.org/10.37188/OPE.20202810.2215
李春龙 , 黄辉 , 梁云 , 等 . 面向电力传感器的环境能量收集技术发展趋势及面临的挑战 [J]. 中国电力 , 2021 , 54 ( 2 ): 27 - 35 .
LI C L , HUANG H , LIANG Y , et al . Power sensor-oriented development and challenges of environmental energy harvesting technologies [J]. Electric Power , 2021 , 54 ( 2 ): 27 - 35 . (in Chinese)
SIANG J , LIM M H , LEONG M S . Review of vibration-based energy harvesting technology: mechanism and architectural approach [J]. International Journal of Energy Research , 2018 , 42 ( 5 ): 1866 - 1893 . doi: 10.1002/er.3986 http://dx.doi.org/10.1002/er.3986
PRAJWAL K T , MANICKAVASAGAM K , SURESH R . A review on vibration energy harvesting technologies: analysis and technologies [J]. The European Physical Journal Special Topics , 2022 , 231 ( 8 ): 1359 - 1371 . doi: 10.1140/epjs/s11734-022-00490-0 http://dx.doi.org/10.1140/epjs/s11734-022-00490-0
阚君武 , 王凯 , 孟凡许 , 等 . 换向激励式压电振动俘能器 [J]. 光学 精密工程 , 2023 , 31 ( 3 ): 371 - 379 . doi: 10.37188/OPE.20233103.0371 http://dx.doi.org/10.37188/OPE.20233103.0371
KAN J W , WANG K , MENG F X , et al . Piezoelectric vibration harvester with excitation direction conversion [J]. Opt. Precision Eng. , 2023 , 31 ( 3 ): 371 - 379 . (in Chinese) . doi: 10.37188/OPE.20233103.0371 http://dx.doi.org/10.37188/OPE.20233103.0371
樊康旗 , 刘朝辉 , 王连松 , 等 . 从人体行走中收集能量的鞋上压电俘能器 [J]. 光学 精密工程 , 2017 , 25 ( 5 ): 1272 - 1280 . doi: 10.3788/ope.20172505.1272 http://dx.doi.org/10.3788/ope.20172505.1272
FAN K Q , LIU Z H , WANG L S , et al . Shoe-mounted piezoelectric energy harvester for collecting energy from human walking [J]. Opt. Precision Eng. , 2017 , 25 ( 5 ): 1272 - 1280 . (in Chinese) . doi: 10.3788/ope.20172505.1272 http://dx.doi.org/10.3788/ope.20172505.1272
SEZER N , KOÇ M . A comprehensive review on the state-of-the-art of piezoelectric energy harvesting [J]. Nano Energy , 2021 , 80 : 105567 . doi: 10.1016/j.nanoen.2020.105567 http://dx.doi.org/10.1016/j.nanoen.2020.105567
周生喜 , 陶凯 , 秦卫阳 . 振动能量俘获专题序 [J]. 力学学报 , 2021 , 53 ( 11 ): 2891 - 2893 .
ZHOU S X , TAO K , QIN W Y . Topic sequence of vibration energy capture [J]. Chinese Journal of Theoretical and Applied Mechanics , 2021 , 53 ( 11 ): 2891 - 2893 . (in Chinese)
张坤 , 赵毫杰 , 冯伟 , 等 . 低频振动能量收集技术研究进展 [J]. 仪表技术与传感器 , 2022 ( 8 ): 100 - 107 .
ZHANG K , ZHAO H J , FENG W , et al . Research advance in low-frequency vibration energy harvesting technology [J]. Instrument Technique and Sensor , 2022 ( 8 ): 100 - 107 . (in Chinese)
LIU H C , ZHONG J W , LEE C K , et al . A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications [J]. Applied Physics Reviews , 2018 , 5 ( 4 ): 041306 . doi: 10.1063/1.5074184 http://dx.doi.org/10.1063/1.5074184
AHN J H , HWANG W S , CHO J Y , et al . A bending-type piezoelectric energy harvester with a displacement-amplifying mechanism for smart highways [J]. Journal of the Korean Physical Society , 2018 , 73 ( 3 ): 330 - 337 . doi: 10.3938/jkps.73.330 http://dx.doi.org/10.3938/jkps.73.330
侯成伟 , 单小彪 , 宋汝君 , 等 . 风向自适应型涡激振动压电俘能器的试验研究 [J]. 机械工程学报 , 2022 , 58 ( 20 ): 120 - 127 . doi: 10.3901/jme.2022.20.120 http://dx.doi.org/10.3901/jme.2022.20.120
HOU C W , SHAN X B , SONG R J , et al . Experimental study of orientation adaptive piezoelectric energy harvester based on vortex induced vibration [J]. Journal of Mechanical Engineering , 2022 , 58 ( 20 ): 120 - 127 . (in Chinese) . doi: 10.3901/jme.2022.20.120 http://dx.doi.org/10.3901/jme.2022.20.120
蒋树农 , 郭少华 , 李显方 . 单压电片悬臂梁式压电俘能器效能分析 [J]. 振动与冲击 , 2012 , 31 ( 19 ): 90 - 94 .
JIANG S N , GUO S H , LI X F . Performance analysis for a unimorph cantilever piezoelectric harvester [J]. Journal of Vibration and Shock , 2012 , 31 ( 19 ): 90 - 94 . (in Chinese)
CHEN X G , LI Y M . Design, modeling and testing of a vibration absorption device with energy harvesting based on force amplifier and piezoelectric stack [J]. Energy Conversion and Management , 2022 , 255 : 115305 . doi: 10.1016/j.enconman.2022.115305 http://dx.doi.org/10.1016/j.enconman.2022.115305
ZHOU S X , HOBECK J D , CAO J Y , et al . Analytical and experimental investigation of flexible longitudinal zigzag structures for enhanced multi-directional energy harvesting [J]. Smart Materials and Structures , 2017 , 26 ( 3 ): 035008 . doi: 10.1088/1361-665x/26/3/035008 http://dx.doi.org/10.1088/1361-665x/26/3/035008
ZHAO Y , QIN Y , GUO L , et al . Modeling and experiment of a V-shaped piezoelectric energy harvester [J]. Shock and Vibration , 2018 , 2018 ( 1 ): 7082724 . doi: 10.1155/2018/7082724 http://dx.doi.org/10.1155/2018/7082724
KIM I H , JUNG H J , LEE B M , et al . Broadband energy-harvesting using a two degree-of-freedom vibrating body [J]. Applied Physics Letters , 2011 , 98 ( 21 ): 214102 . doi: 10.1063/1.3595278 http://dx.doi.org/10.1063/1.3595278
ZHAO N , YANG J , YU Q M , et al . Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies [J]. The Review of Scientific Instruments , 2016 , 87 ( 1 ): 015003 . doi: 10.1063/1.4940417 http://dx.doi.org/10.1063/1.4940417
杨沥 , 袁天辰 , 杨俭 , 等 . 两自由度压电式轨道振动能量采集器 [J]. 上海工程技术大学学报 , 2019 , 33 ( 3 ): 225 - 231 .
YANG L , YUAN T C , YANG J , et al . Two-degree-of-freedom piezoelectric track vibration energy harvester [J]. Journal of Shanghai University of Engineering Science , 2019 , 33 ( 3 ): 225 - 231 . (in Chinese)
QIAN F , XU T B , ZUO L . Design, optimization, modeling and testing of a piezoelectric footwear energy harvester [J]. Energy Conversion and Management , 2018 , 171 : 1352 - 1364 . doi: 10.1016/j.enconman.2018.06.069 http://dx.doi.org/10.1016/j.enconman.2018.06.069
CHEN X G , LI Y M . Design, modeling and testing of a vibration absorption device with energy harvesting based on force amplifier and piezoelectric stack [J]. Energy Conversion and Management , 2022 , 255 : 115305 . doi: 10.1016/j.enconman.2022.115305 http://dx.doi.org/10.1016/j.enconman.2022.115305
LI Z J , YANG Z B , NAGUIB H , et al . Design and studies on a low-frequency truss-based compressive-mode piezoelectric energy harvester [J]. IEEE/ASME Transactions on Mechatronics , 2018 , 23 ( 6 ): 2849 - 2858 . doi: 10.1109/tmech.2018.2871781 http://dx.doi.org/10.1109/tmech.2018.2871781
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621
