ZHANG Xu,LAI Lei-jie,LI Peng-zhi,et al.Closed-loop inverse iterative learning control in frequency-domain for electromagnetic driven compliant micro-positioning platform[J].Optics and Precision Engineering,2021,29(09):2149-2157.
To overcome the problems of low damping resonance and different dynamics properties in the large-range compliant micro-positioning stage driven by a voice coil motor, a compound closed-loop frequency-domain inverse iterative learning control method based on data-driven frequency-domain inverse iterative feedforward compensation and PI feedback control with phase-lead compensation is used for high-speed and high-precision control. First, the micro-positioning stage with a double-parallelogram flexure mechanism driven by a voice coil motor is built, and a dynamics model is identified for different working positions. Then, a PI feedback controller with phase-lead compensation is designed to improve the relative stability of the positioning system. Input and output data are then used for online inverse estimation of the system frequency response function, which can be used as feedforward compensation to further eliminate the resonance effect. Finally, tracking experiments are conducted using the proposed control method, which is then compared with other methods. Experimental results show that the maximum tracking error for the triangular trajectory using the proposed control method is 0.175%. Compared with a PID control, phase-leading PI control, and transfer function inverse feedforward control, the root mean square errors of tracking are reduced by 8.75, 5.43, and 2.21 times, respectively, which can better meet the requirements of high tracking accuracy, fast speed, and strong anti-interference ability of large stroke micro/nano-positioning.
CUI J , WANG D F . Feedforward compensation control of X-Y precise positioning table using inversed-sensitive function [J]. Opt. Precision Eng. , 2015 , 23 ( 4 ): 1081 - 1087 . (in Chinese) . doi: 10.3788/OPE.20152304.1081 http://dx.doi.org/10.3788/OPE.20152304.1081
WANG F C , WANG Y T , TIAN D P . Perfect tracking control for fast-steering mirror driven by voice coil motor [J]. Opt. Precision Eng. , 2020 , 28 ( 9 ): 1997 - 2006 . (in Chinese) . doi: 10.37188/OPE.20202809.1997 http://dx.doi.org/10.37188/OPE.20202809.1997
ITO S , TROPPMAIR S , LINDNER B , et al . Long-range fast nanopositioner using nonlinearities of hybrid reluctance actuator for energy efficiency [J]. IEEE Transactions on Industrial Electronics , 2019 , 66 ( 4 ): 3051 - 3059 . doi: 10.1109/tie.2018.2842735 http://dx.doi.org/10.1109/tie.2018.2842735
XU Q . New flexure parallel-kinematic micropositioning system with large workspace [J]. IEEE Transactions on Robotics , 2011 , 28 ( 2 ): 478 - 491 . doi: 10.1109/tro.2011.2173853 http://dx.doi.org/10.1109/tro.2011.2173853
PARMAR G , BARTON K , AWTAR S . Large dynamic range nanopositioning using iterative learning control [J]. Precision engineering , 2014 , 38 ( 1 ): 48 - 56 . doi: 10.1016/j.precisioneng.2013.07.003 http://dx.doi.org/10.1016/j.precisioneng.2013.07.003
CSENCSICS E , SCHLARP J , SCHITTER G . High-performance hybrid-reluctance-force-based tip/tilt system: Design, control, and evaluation [J]. IEEE/ASME Transactions on Mechatronics , 2018 , 23 ( 5 ): 2494 - 2502 . doi: 10.1109/tmech.2018.2866272 http://dx.doi.org/10.1109/tmech.2018.2866272
ZHANG Z , YANG X , YAN P . Large dynamic range tracking of an XY compliant nanomanipulator with cross-axis coupling reduction [J]. Mechanical Systems and Signal Processing , 2019 , 117 : 757 - 770 . doi: 10.1016/j.ymssp.2018.08.014 http://dx.doi.org/10.1016/j.ymssp.2018.08.014
KANG S , LEE M G , CHOI Y M . Six Degrees-of-Freedom Direct-Driven Nanopositioning Stage using Crab-Leg Flexures [J]. IEEE/ASME Transactions on Mechatronics , 2020 . 513 - 525 . doi: 10.1109/TMECH.2020.2972301 http://dx.doi.org/10.1109/TMECH.2020.2972301
DAI Y F , DUAN W R , WANG G L , et al . Modeling and performance analysis of fast knife servo system driven by voice coil motor [J]. Journal of National University of Defense Technology , 2008 , 30 ( 1 ): 78 - 82 (in Chinese) . doi: 10.3969/j.issn.1001-2486.2008.01.017 http://dx.doi.org/10.3969/j.issn.1001-2486.2008.01.017
XIE S D , WANG B C , WU D . Electromagnetic field and driving force of electromagnetic driven fast tool servo mechanism [J]. Journal of Tsinghua University (Science and Technology) , 2008 , 48 ( 8 ): 72 - 75 . (in Chinese) . doi: 10.3321/j.issn:1000-0054.2008.08.019 http://dx.doi.org/10.3321/j.issn:1000-0054.2008.08.019
CAI K , TIAN Y , LIU X , et al . Development and control methodologies for 2-DOF micro/nano positioning stage with high out-of-plane payload capacity [J]. Robotics and Computer-Integrated Manufacturing , 2019 , 56 : 95 - 105 . doi: 10.1016/j.rcim.2018.08.007 http://dx.doi.org/10.1016/j.rcim.2018.08.007
XI S Z , LAI L J . Paired double parallelogram flexure mechanism clamped by corrugated beam for underconstraint elimination [J]. Rev.Sci.Instrum , 2020 , 91 ( 8 ): 086102 . doi: 10.1063/5.0003176 http://dx.doi.org/10.1063/5.0003176
KIM K S , ZOU Q . A Modeling-Free Inversion-Based Iterative Feedforward Control for Precision Output Tracking of Linear Time-Invariant Systems [J]. IEEE/ASME Transactions on Mechatronics , 2013 , 18 ( 6 ): 1767 - 1777 . doi: 10.1109/tmech.2012.2212912 http://dx.doi.org/10.1109/tmech.2012.2212912