1.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
扫 描 看 全 文
SHAO Meng, LI Hongwen, WANG Jianli, et al. Design and performance analysis of high-voltage drive system for thousand-element adaptive optics. [J]. Optics and Precision Engineering 31(17):2493-2504(2023)
SHAO Meng, LI Hongwen, WANG Jianli, et al. Design and performance analysis of high-voltage drive system for thousand-element adaptive optics. [J]. Optics and Precision Engineering 31(17):2493-2504(2023) DOI: 10.37188/OPE.20233117.2493.
自适应光学技术可以对大气湍流造成的波前误差进行实时校正,是实现大型地基望远镜高分辨率成像的关键技术。随着望远镜口径不断增大,自适应光学系统的校正单元数达到千单元量级。首先从自动控制角度建立了自适应光学系统各电控环节的等效模型,分析了系统延时对控制环节性能的影响。然后介绍了自适应光学电控环节中高压驱动系统的设计问题,从自动控制角度分析了自适应光学系统对高压放大器闭环带宽的需求,给出了分析结果。最后报道了千单元级自适应光学高压驱动系统的集成和测试工作。实验结果表明:本文所设计的高压放大器可以实现120 V输出,,-,3 dB带宽达到5 000 Hz,所设计的高压驱动系统经过集成后,利用湍流屏等效模拟60 Hz格林伍德频率,校正后的波前残差均值为0.16,λ,,可以实现千单元级压电变形镜的校正控制。
Adaptive optics technology can correct the wavefront error caused by atmospheric turbulence in real time and is the key technology to achieve high-resolution imaging of large ground-based telescopes. As the diameter of a telescope increases, the number of correction elements in the adaptive optics system can reach the order of one thousand. This paper first establishes the equivalent model of the control link of the adaptive optics system from the perspective of automatic control and analyzes the influence of the system delay on the performance of the control link. Then, it discusses the design of the high-voltage drive system in the control link of adaptive optics, analyzes the demand of the adaptive optics system for the closed-loop bandwidth of the high-voltage amplifier from the perspective of automatic control, and provides the analysis results. Finally, it describes the integration and test of the high-voltage drive system of the thousand-element adaptive optics system. The experimental results show that the designed high-voltage amplifier can achieve 120 V output, and the bandwidth of ,-,3 dB can reach 5 000 Hz. After the integration of the designed high-voltage drive system, the turbulence screen is used to simulate the equivalent 60 Hz Greenwood frequency, and the corrected mean residual error of the wavefront is 0.16,λ,. The designed high-voltage drive system can achieve calibration control of the thousand-element piezoelectric deformable mirror.
自适应光学望远镜自动控制高压放大器
adaptive opticstelescopesautomatic controlshigh-voltage amplifiers
董玉磊. 基于GPU的自适应光学系统波前处理算法实时性研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所,2018 .
DONG Y L. Study of Real-time Wavefront Processing Algorithm for Adaptive Optics System Based on GPU[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,2018.(in Chinese)
贾建禄, 赵金宇, 王建立, 等. 机动式车载自适应光学波前处理器的设计[J]. 光学 精密工程, 2018, 26(1): 48-54. doi: 10.3788/ope.20182601.0048http://dx.doi.org/10.3788/ope.20182601.0048
JIA J L, ZHAO J Y, WANG J L, et al. Design of mobile vehicle-based adaptive optical wave-front processor[J]. Opt. Precision Eng., 2018, 26(1): 48-54.(in Chinese). doi: 10.3788/ope.20182601.0048http://dx.doi.org/10.3788/ope.20182601.0048
ROBERTS J E, DEKANY R G, BURRUSS R S, et al. Results from the PALM-3000 high-order adaptive optics system[C].SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 8447, Adaptive Optics Systems III, Amsterdam, Netherlands. 2012, 8447: 373-380. doi: 10.1117/12.926477http://dx.doi.org/10.1117/12.926477
FUSCO T, ROUSSET G, SAUVAGE J F, et al. High-order adaptive optics requirements for direct detection of extrasolar planets: application to the SPHERE instrument[J]. Optics Express, 2006, 14(17): 7515-7534. doi: 10.1364/oe.14.007515http://dx.doi.org/10.1364/oe.14.007515
ESPOSITO S, TOZZI A, FERRUZZI D, et al. First-light adaptive optics system for large binocular telescope[C].Astronomical Telescopes and Instrumentation. Proc SPIE 4839, Adaptive Optical System Technologies II, Waikoloa, Hawai'i, USA. 2003, 4839: 164-173. doi: 10.1117/12.458866http://dx.doi.org/10.1117/12.458866
MARTIN H M, CUERDEN B, et al. Deformable secondary mirrors for the LBT adaptive optics system[C].SPIE Astronomical Telescopes and Instrumentation. Proc SPIE 6272, Advances in Adaptive Optics II, Orlando, Florida, USA. 2006, 6272: 274-283. doi: 10.1117/12.672698http://dx.doi.org/10.1117/12.672698
BENDEK E A, HART M, POWELL K B, et al. Status of the 6.5m MMT Telescope laser adaptive optics system[C].SPIE Astronomical Telescopes and Instrumentation. Proc SPIE 7736, Adaptive Optics Systems II, San Diego, California, USA. 2010, 7736: 268-279. doi: 10.1117/12.857663http://dx.doi.org/10.1117/12.857663
SINQUIN J C, LURCON J M, GUILLEMARD C. Deformable mirror technologies for astronomy at CILAS[C].SPIE Astronomical Telescopes and Instrumentation. Proc SPIE 7015, Adaptive Optics Systems, Marseille, France. 2008, 7015: 151-162. doi: 10.1117/12.787400http://dx.doi.org/10.1117/12.787400
陈俊杰. 基于天文应用的大口径压电变形镜技术研究[D]. 合肥: 中国科学技术大学,2017.
CHEN J J. Large Aperture Piezoelectric Deformable Mirror for Astronomical Application [D]. Hefei: University of Science and Technology of China, 2017. (in Chinese)
林旭东, 薛陈, 刘欣悦, 等. 自适应光学波前校正器技术发展现状[J]. 中国光学, 2012, 5(4): 337-351. doi: 10.3788/co.20120504.0337http://dx.doi.org/10.3788/co.20120504.0337
LIN X D, XUE CH, LIU X Y, et al. Current status and research development of wavefront correctors for adaptive optics[J]. Chinese Optics and Applied Optics Abstracts, 2012, 5(4): 337-351.(in Chinese). doi: 10.3788/co.20120504.0337http://dx.doi.org/10.3788/co.20120504.0337
林旭东, 刘欣悦, 王建立, 等. 137单元变形镜的性能测试及校正能力实验[J]. 光学 精密工程, 2013, 21(2): 267-273. doi: 10.3788/ope.20132102.0267http://dx.doi.org/10.3788/ope.20132102.0267
LIN X D, LIU X Y, WANG J L, et al. Performance test and experiment of correction capability of 137-element deformable mirror[J]. Opt. Precision Eng., 2013, 21(2): 267-273.(in Chinese). doi: 10.3788/ope.20132102.0267http://dx.doi.org/10.3788/ope.20132102.0267
林旭东, 刘欣悦, 王建立, 等. 961单元变形镜研制及性能测试[J]. 光学学报, 2013, 33(6): 1-6. doi: 10.3788/AOS201333.0601001http://dx.doi.org/10.3788/AOS201333.0601001
LIN X D, LIU X Y, WANG J L, et al. Development and performance test of the 961-element deformable mirror[J]. Acta Optica Sinica, 2013, 33(6): 1-6.(in Chinese). doi: 10.3788/AOS201333.0601001http://dx.doi.org/10.3788/AOS201333.0601001
王建立, 董玉磊, 姚凯男, 等. 349单元自适应光学波前处理器[J]. 光学 精密工程, 2018, 26(5): 1007-1013. doi: 10.3788/ope.20182605.1007http://dx.doi.org/10.3788/ope.20182605.1007
WANG J L, DONG Y L, YAO K N, et al. Three hundred and fourty-nine unit adaptive optical wavefront processor[J]. Opt. Precision Eng., 2018, 26(5): 1007-1013.(in Chinese). doi: 10.3788/ope.20182605.1007http://dx.doi.org/10.3788/ope.20182605.1007
贾建禄, 王建立, 赵金宇, 等. 961单元自适应光学系统波前处理器[J]. 光学 精密工程, 2013, 21(6): 1387-1393. doi: 10.3788/OPE.20132106.1387http://dx.doi.org/10.3788/OPE.20132106.1387
JIA J L, WANG J L, ZHAO J Y, et al. 961-element adaptive optical wave-front processor[J]. Opt. Precision Eng., 2013, 21(6): 1387-1393. (in Chinese). doi: 10.3788/OPE.20132106.1387http://dx.doi.org/10.3788/OPE.20132106.1387
YANG L Q, YAO K N, WANG J L, et al. Performance analysis of 349-element adaptive optics unit for a coherent free space optical communication system[J]. Scientific Reports, 2019, 9(1): 13150. doi: 10.1038/s41598-019-48338-3http://dx.doi.org/10.1038/s41598-019-48338-3
章承伟. 基于GPU的自适应光学实时波前控制系统研究[D]. 合肥: 中国科学技术大学, 2018.
ZHANG C W. GPU-based Adaptive Optics Real-time Control System[D]. Hefei: University of Science and Technology of China, 2018. (in Chinese)
LI D Y, HU L F, MU Q Q, et al. Wavefront processor for liquid crystal adaptive optics system based on Graphics Processing Unit[J]. Optics Communications, 2014, 316: 211-216. doi: 10.1016/j.optcom.2013.11.052http://dx.doi.org/10.1016/j.optcom.2013.11.052
杨乐强, 王建立, 姚凯男, 等. 基于GPU的961单元自适应光学系统波前处理器设计及其动态性能[J]. 光学 精密工程, 2022, 30(23): 3004-3012. doi: 10.37188/ope.20223023.3004http://dx.doi.org/10.37188/ope.20223023.3004
YANG L Q, WANG J L, YAO K N, et al. Design and dynamic performance of wavefront processor for 961 element adaptive optics system based on GPU[J]. Opt. Precision Eng., 2022, 30(23): 3004-3012. (in Chinese). doi: 10.37188/ope.20223023.3004http://dx.doi.org/10.37188/ope.20223023.3004
林旭东, 刘欣悦, 王帅, 等. 桌面97单元自适应光学系统性能测试[J]. 光学 精密工程, 2016, 24(6)1272-1280. doi: 10.3788/ope.20162406.1272http://dx.doi.org/10.3788/ope.20162406.1272
LIN X D, LIU X Y, WANG SH, et al. Performance testing of a desk-top 97-element adaptive optical system[J]. Opt. Precision Eng., 2016, 24(6)1272-1280(in Chinese). doi: 10.3788/ope.20162406.1272http://dx.doi.org/10.3788/ope.20162406.1272
宋定安. 自适应光学系统中鲁棒控制技术研究[D]. 成都: 电子科技大学,2018 .
SONG D A. Robust Control in Adaptive Optice System[D]. Chengdu: University of Electronic Science and Technology of China, 2018. (in Chinese)
林海奇. 基于模型辨识的自适应光学系统控制技术研究[D].北京:中国科学院大学, 2019. doi: 10.3788/CJL201946.0705004http://dx.doi.org/10.3788/CJL201946.0705004
LIN H Q. Research on Adaptive Optics System Control Technology Based on Model Identification [D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese). doi: 10.3788/CJL201946.0705004http://dx.doi.org/10.3788/CJL201946.0705004
XU L S, LI H W, LI P Z, et al. The application of classical control in the design and analysis of power amplifiers for driving piezoelectric stack actuators[J]. Electronics, 2021, 10(6): 720. doi: 10.3390/electronics10060720http://dx.doi.org/10.3390/electronics10060720
YANG C, LI C L, XIA F Z, et al. Charge controller with decoupled and self-compensating configurations for linear operation of piezoelectric actuators in a wide bandwidth[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5392-5402. doi: 10.1109/tie.2018.2868321http://dx.doi.org/10.1109/tie.2018.2868321
MADEC PP Y. Overview of deformable mirror technologies for adaptive optics and astronomy[C].SPIE Astronomical Telescopes and Instrumentation. Proc SPIE 8447, Adaptive Optics Systems III, Amsterdam, Netherlands. 2012, 8447: 22-39. doi: 10.1117/12.924892http://dx.doi.org/10.1117/12.924892
张雨东, 饶长辉, 李新阳. 自适应光学及激光操控[M]. 北京: 国防工业出版社, 2016.
ZHANG Y D, RAO CH H, LI X Y. Adaptive Optics and Laser Manipulation[M]. Beijing: National Defense Industry Press, 2016.(in Chinese)
0
Views
22
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution