CHEN Xing-ming, LIAO Juan, LI Bo etc. Foreground detection based on modified ViBe in dynamic background[J]. Editorial Office of Optics and Precision Engineering, 2014,22(9): 2545-2552
CHEN Xing-ming, LIAO Juan, LI Bo etc. Foreground detection based on modified ViBe in dynamic background[J]. Editorial Office of Optics and Precision Engineering, 2014,22(9): 2545-2552 DOI: 10.3788/OPE.20142209.2545.
Foreground detection based on modified ViBe in dynamic background
As Visual Background Extractor(ViBe) can not implement foreground detection precisely for a particular scene with dynamic backgrounds
This paper proposes a modified ViBe algorithm. It describes the original ViBe algorithm and its characteristics and discusses several modification schemes for the original ViBe in dynamic background scenes. Firstly
model initialization is conducted with several continuous frames instead of one single frame to handle ghosts. Then
self-adaptive threshold is adopted in the process of model matching so that background models is better suitable for the dynamic background. Finally
a spatial coherence estimation and a fuzzy rule in model maintenance are proposed to reduce false detections and to improve the robustness of the algorithm. Experiments demonstrate that the algorithm proposed detects effectively the movement targets in dynamic background scenes and its precision is improved by 20 percent as compared with that of the original ViBe algorithm.
关键词
Keywords
references
KERANER J K,THOMPSON W B,BOLEY D L. Optical flow estimation:an error analysis of gradient-based methods with local optimization[J].IEEE Transaction on Patten and Analysis Machine Intelligence, 1987, 9(2):229-244.
BRUTZER S, HOFERLIN B, HEIDEMANN G. Evaluation of background subtraction techniques for video surveillance[C]. Computer Vision and Pattern Recognition, 2011:1937-1944.
BOUWMANS T. Recent advanced statistical background modeling for foreground detection:a systematic survey[J]. Recent Patents on Computer Science, 2011, 4(3):146-176.
朱娟娟, 郭宝龙. 复杂场景中基于变块差分的运动目标检测[J]. 光学 精密工程, 2011, 19(1):184-191. ZHU J J, GUO B L. Moving object detection based on variant block difference in complex scenes [J]. Opt. Precision Eng., 2011, 19(1):184-191.(in Chinese)
李刚, 曾锐利, 林凌, 等. 基于帧间颜色梯度的背景建模[J]. 光学 精密工程, 2007, 15(8):1258-1262. LI G, ZENG R L, LIN L, et al.. A novel background modeling method based on color grade of different frames [J]. Opt.Precision Eng., 2007, 15(8):1258-1262.(in Chinese)
张红颖, 胡正. CenSurE 特征和时空信息相结合的运动目标检测[J]. 光学 精密工程, 2013, 21(9):2453-2463. ZHANG H Y, HU ZH. Moving object detection in combination of CenSurE and spatial-temporal information [J]. Opt. Precision Eng., 2013, 21(9):2453-2463. (in Chinese)
STAUFFER C, GRIMSON W E L. Learning patterns of activity using real-time tracking [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000, 22(8):747-757.
ZIVKOVIC Z, VAN D H F. Efficient adaptive density estimation per image pixel for the task of background subtraction [J]. Pattern Recognition Letters, 2006:773-780.
WREN C R, AZARBAYEJANI A, DARRELL T, et al.. Pfinder:Real-time tracking of the human body [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785.
MADDALENA L, PETROSINO A. A self-organizing approach to background subtraction for visual surveillance applications [J]. IEEE Transactions on Image Processing, 2008, 17(7):1168-1177.
MADDALENA L, PETROSINO A. A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[J]. Neural Computer Application, 2010, 19(2):179-186.
MADDALENA L, PETROSINO A. The SOBS algorithm:what are the Limits?[C]. Computer Vision and Pattern Recognition Workshops, 2012:21-26.
BARNICH O, DROOGENBROECK M V. ViBe:A universal background subtraction algorithm for video sequences [J]. IEEE Transaction on Image Processing, 2011, 20(6):1709-1724.
DROOGENBROECK M V, PAQUOT O. Background subtraction:experiments and improvements for ViBe [C]. Computer Vision and Pattern Recognition Workshops, 2012:32-37.
DING J, MA R, CHEN S. A scale-based connected coherence tree algorithm for image segmentation [J]. IEEE Transaction on Image Process, 2008, 17(2):204-216.