{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"中高轨道目标的地基光电监视"}]},{"lang":"en","data":[{"name":"text","data":"Ground-based photoelectric surveillance for mid-high orbit target"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"高","givenname":"扬","namestyle":"eastern","prefix":""},{"lang":"en","surname":"GAO","givenname":"Yang","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff2","text":"2"}],"role":["first-author"],"bio":[{"lang":"zh","text":["高扬(1989-), 女, 黑龙江七台河人, 博士研究生, 2011年于吉林大学获得学士学位, 主要从事星图识别、天文导航等方面的研究.E-mail:87040544@qq.com"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"高扬"}]},{"name":"text","data":"(1989-), 女, 黑龙江七台河人, 博士研究生, 2011年于吉林大学获得学士学位, 主要从事星图识别、天文导航等方面的研究.E-mail:"},{"name":"text","data":"87040544@qq.com"}]]}],"email":"87040544@qq.com","deceased":false},{"name":[{"lang":"zh","surname":"赵","givenname":"金宇","namestyle":"eastern","prefix":""},{"lang":"en","surname":"ZHAO","givenname":"Jin-yu","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":["corresp"],"corresp":[{"rid":"cor1","lang":"zh","text":" 赵金宇(1977-), 男, 内蒙古赤峰市人, 博士生导师, 研究员, 2006年于中科院长春光机所获得博士学位, 主要从事数字图像信号处理软硬件技术、图像跟踪与目标识别、图像恢复等方面的研究.E-mail:zhaojy@ciomp.ac.cn ZHAO Jin-yu, E-mail:zhaojy@ciomp.ac.cn ","data":[{"name":"text","data":" 赵金宇(1977-), 男, 内蒙古赤峰市人, 博士生导师, 研究员, 2006年于中科院长春光机所获得博士学位, 主要从事数字图像信号处理软硬件技术、图像跟踪与目标识别、图像恢复等方面的研究.E-mail:zhaojy@ciomp.ac.cn ZHAO Jin-yu, E-mail:zhaojy@ciomp.ac.cn "}]}],"email":"zhaojy@ciomp.ac.cn","deceased":false},{"name":[{"lang":"zh","surname":"刘","givenname":"俊池","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LIU","givenname":"Jun-chi","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"杨","givenname":"晓霞","namestyle":"eastern","prefix":""},{"lang":"en","surname":"YANG","givenname":"Xiao-xia","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"王","givenname":"斌","namestyle":"eastern","prefix":""},{"lang":"en","surname":"WANG","givenname":"Bin","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"王","givenname":"敏","namestyle":"eastern","prefix":""},{"lang":"en","surname":"WANG","givenname":"Min","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff2","text":"2"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"陈","givenname":"涛","namestyle":"eastern","prefix":""},{"lang":"en","surname":"CHEN","givenname":"Tao","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"1","text":"中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033","data":[{"name":"text","data":"中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033"}]},{"lang":"en","label":"1","text":"Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China","data":[{"name":"text","data":"Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China"}]}]},{"id":"aff2","intro":[{"lang":"zh","label":"2","text":"中国科学院大学, 北京 100049","data":[{"name":"text","data":"中国科学院大学, 北京 100049"}]},{"lang":"en","label":"2","text":"University of Chinese Academy of Sciences, Beijing 100049, China","data":[{"name":"text","data":"University of Chinese Academy of Sciences, Beijing 100049, China"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"针对中高轨目标暗弱为目标识别和识别效率增加的难度,研究了基于被动光学系统的地基光电光测系统;同时提出了一种通过对原始图像进行最优化处理,从而有效提高目标信噪比,增加目标识别效率的方法。首先分析了在轨目标的光学反射特性,比较了不同模式下目标的信噪比,给出光电监视系统的最优设计方案。然后,结合目标运动特性和观测条件等因素,设计了适合中高轨道目标的地基地球同步轨道(GEO)目标的观测模式。最后,针对暗弱目标图像识别难题,提出了基于最优化原理的低信噪比目标识别图像处理的新方法。根据实测数据对本文方法进行了实验验证,并与传统差帧法进行了比较。结果显示,本文方法可在目标信噪比大于3.09点条件下识别出目标。该项研究对中高轨道目标光电监视用设备的设计和使用很有参考价值。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"A ground-based photo-electronic surveillance system based on passive optical systems was investigated for improving its recognition ability and recognition efficiency for faint targets in mid-high orbits. Meanwhile, an optimized processing method for original images was presented to enhance the Signal to Noise Ratios(SNRs)of the faint targets and improve the system recognition efficiency. The optical reflection characteristics of orbital targets were analyzed and a optimized design scheme for the ground-based photo-electronic surveillance system was given by comparing the SNRs in different modes. In combined with target motion, observation conditions and other factors, an observation model of Geosynchronous Orbit (GEO) targets was designed. Finally, in view of faint target recognition, a new target recognition method for faint targets was presented based on optimization principle. According to the measured data, this method was validated and compared with that of the traditional difference frame method. The results show that the target can be identified when the target SNR is greater than 3.09. This research provides a high reference value for the design and application of photo-electronic surveillance equipment for faint targets in the mid-high orbit."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"同步轨道"}],[{"name":"text","data":"中高轨道"}],[{"name":"text","data":"目标识别"}],[{"name":"text","data":"光电监视"}],[{"name":"text","data":"信噪比"}],[{"name":"text","data":"图像处理"}]]},{"lang":"en","data":[[{"name":"text","data":"Geosynchronous Orbit (GEO)"}],[{"name":"text","data":"mid-high orbit"}],[{"name":"text","data":"target recognition"}],[{"name":"text","data":"photoelectric surveillance"}],[{"name":"text","data":"Signal to Noise Ratio(SNR)"}],[{"name":"text","data":"image process"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"1"}],"title":[{"name":"text","data":"引言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"空间目标监测主要有雷达监测和光电监测两种手段,根据这两种方法的原理,中高轨目标的监测主要由光电系统完成"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。由于空间目标监测在空间预警,信息对抗等方面的重要应用,国内外都对光电空间目标监测有研究和应用"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"2","type":"bibr","rid":"b2","data":[{"name":"text","data":"2"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"3","type":"bibr","rid":"b3","data":[{"name":"text","data":"3"}]}}],"rid":["b2","b3"],"text":"2-3","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。1974年,美国就开始发展地基深空光电探测系统"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"(Ground Based Electro-Optical Deep Space Surveillance, GEOSS)来搜索运动较慢的高轨目标。2011年,美国的空间监视望远镜(Space Surveillance Telescope, SST)完成部署,每天能观测21 600个目标"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"5","type":"bibr","rid":"b5","data":[{"name":"text","data":"5"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。同步轨道目标(Geosynchronous Orbit, GEO)区域的空间密度没有LEO高,但静止轨道位置具有唯一性,且随着人类空间活动越发频繁,GEO碎片显著增加,NASA估计GEO轨道目标在10 cm及以上的大约有3 250颗。受到最小碎片尺度灵敏度的限制,空间编目中能被维持的一般是10 cm的LEO目标和70 cm的GEO目标,而LEO轨道上仅1 cm的碎片即可导致卫星发射失败。比编目库中目标更小的目标即使能被探测并统计数量,但当没有足够的探测器覆盖时也难以维持编目。目前,我国已建成空间目标监测网,对8 000多个空间目标进行编目监视,并成功地为多颗卫星发射预警"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"6","type":"bibr","rid":"b6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"空间目标的光电探测要求在恒星背景中分辨出卫星,然而在可见光波段,恒星与卫星成像并无明显差别,中高轨目标暗弱更为其识别增加了难度。目前,常用的识别方法有图像差帧法、局部自适应阈值分割法、窗口检测法和Hough变换"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"7","type":"bibr","rid":"b7","data":[{"name":"text","data":"7"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}}],"rid":["b7","b8","b9"],"text":"7-9","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"法等。本文提出了一种对原始图像进行最优化处理,通过有效提高目标信噪比从而增加目标识别率的方法。与传统差帧法相比,该方法可在目标信噪比大于3.09的条件下识别出目标。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2"}],"title":[{"name":"text","data":"目标特性和最优信噪比"}],"level":"1","id":"s2"}},{"name":"p","data":[{"name":"text","data":"为了估计被动探测器方法的有效性,需要理解轨道目标的光学特性。对于LEO区域,小尺度碎片数量是基于雷达碎片搜索估计得到的;同理,GEO碎片分布估计是利用地基望远镜搜索确定的"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"6","type":"bibr","rid":"b6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。轨道目标分布统计模型是大小和轨道特征的函数。光学特性计算的闭环公式是具有很多变量的复杂函数,包括目标大小、形状、方向、观测站、太阳和目标的几何位置以及材料的双向发射分布函数(Bidirectional Reflectance Distribution Function, BRDF)。光学特征采用的视星等来源于天文学。当用球体近似时,目标视星等表示为"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"10","type":"bibr","rid":"b10","data":[{"name":"text","data":"10"}]}},{"name":"text","data":"]"}]},{"name":"text","data":":"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"1"}],"data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702335&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702335&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702335&type=middle"}}}],"id":"gxjmgc-25-10-2584-E1"}}]},{"name":"p","data":[{"name":"text","data":"其中:"},{"name":"italic","data":[{"name":"text","data":"M"}]},{"name":"sub","data":[{"name":"text","data":"sun"}]},{"name":"text","data":"为太阳视星等(-26.7 Mv), "},{"name":"italic","data":[{"name":"text","data":"D"}]},{"name":"text","data":"是目标直径,"},{"name":"italic","data":[{"name":"text","data":"R"}]},{"name":"text","data":"是观测站到目标的距离,"},{"name":"italic","data":[{"name":"text","data":"α"}]},{"name":"sub","data":[{"name":"text","data":"S"}]},{"name":"text","data":"是全发射率,"},{"name":"italic","data":[{"name":"text","data":"α"}]},{"name":"sub","data":[{"name":"text","data":"D"}]},{"name":"text","data":"是漫反射率,"},{"name":"italic","data":[{"name":"text","data":"f"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"φ"}]},{"name":"text","data":")是太阳相位角函数。一般地,镜面反射相位角函数是常数1/4, 漫反射相位角函数为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"2"}],"data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702356&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702356&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702356&type=middle"}}}],"id":"gxjmgc-25-10-2584-E2"}}]},{"name":"p","data":[{"name":"text","data":"其中"},{"name":"italic","data":[{"name":"text","data":"φ"}]},{"name":"text","data":"为太阳相位角。目标反射流量密度如下:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"3"}],"data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702373&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702373&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702373&type=middle"}}}],"id":"gxjmgc-25-10-2584-E3"}}]},{"name":"p","data":[{"name":"text","data":"按公式,LEO轨道的10 cm目标和GEO轨道70 cm目标在大气层外的亮度分别为12 mv和16 mv,对应0.9×10"},{"name":"sup","data":[{"name":"text","data":"6"}]},{"name":"text","data":" ph/sm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"和2.2×10"},{"name":"sup","data":[{"name":"text","data":"4"}]},{"name":"text","data":" ph/sm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"利用CCD探测器进行目标探测, 由于目标距离较远、尺寸小,在光学系统中是一个点源。与点扩散函数相比,一般望远镜的像素尺寸均较大。另外,除极小口径外,地基系统分辨力受到大气视宁度的限制。例如,15 cm口径望远镜按衍射极限设计后,点扩散函数直径近似为2″,与典型大气视宁度类似,焦比为2时系统的衍射点扩散函数直径约为3 "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"m,远小于像元尺寸,从而保证大多数能量落到单个像元上。考虑到光学效率、大气透过率和探测器量子效率等因素,目标落在单个像元的电子数为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"4"}],"data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702392&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702392&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702392&type=middle"}}}],"id":"gxjmgc-25-10-2584-E4"}}]},{"name":"p","data":[{"name":"text","data":"其中:"},{"name":"italic","data":[{"name":"text","data":"QE"}]},{"name":"text","data":"为量子效率,"},{"name":"italic","data":[{"name":"text","data":"τ"}]},{"name":"text","data":"为光学效率,"},{"name":"italic","data":[{"name":"text","data":"A"}]},{"name":"text","data":"为入曈面积,"},{"name":"italic","data":[{"name":"text","data":"τ"}]},{"name":"sub","data":[{"name":"text","data":"atm"}]},{"name":"text","data":"为大气透过率,"},{"name":"italic","data":[{"name":"text","data":"t"}]},{"name":"text","data":"为积分时间。"}]},{"name":"p","data":[{"name":"text","data":"对于地基观测,感兴趣区域的光谱在白天和晨昏状态主要由瑞利散射太阳光主导; 一旦到自然晨昏状态,或太阳低于水平12°,主导因素包括瑞利散射月光、本地灯光污染和上层大气在近红外波段的原子再结合等, 而空间探测器仅受到星光强度的影响。背景亮度与背景星等的关系如下:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"5"}],"data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702417&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702417&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702417&type=middle"}}}],"id":"gxjmgc-25-10-2584-E5"}}]},{"name":"p","data":[{"name":"text","data":"到达单个像元的照度和电子数分别为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"6"}],"data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702440&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702440&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702440&type=middle"}}}],"id":"gxjmgc-25-10-2584-E6"}}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"7"}],"data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702462&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702462&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702462&type=middle"}}}],"id":"gxjmgc-25-10-2584-E7"}}]},{"name":"p","data":[{"name":"text","data":"其中:"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":"为像元尺寸, "},{"name":"italic","data":[{"name":"text","data":"f"}]},{"name":"text","data":"为光学系统焦距,"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"text","data":"为通光口径。给定像元尺寸下,不同背景天光对应的照度如"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"text","data":"不同天光背景的照度曲线"}]},{"lang":"en","label":[{"name":"text","data":"Fig 1"}],"title":[{"name":"text","data":"Illumination curves of different skylight backgrounds"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702483&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702483&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702483&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"当计算恒星等已知目标时,探测过程实际是通过阈值对每个像素进行处理。单图像帧的像素不仅包括背景辐射噪声和探测器内部噪声,也可能存在目标信号"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"8","type":"bibr","rid":"b8","data":[{"name":"text","data":"8"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。传统成像信噪比包含目标信号反射光字噪声,即发射噪声会作为一个噪声组成, 当考虑空间扩展成像质量或准确辐射时这很重要;然而,在确定一个探测事件阈值所用的背景水平量级的像素中目标信号不存在变化时, 唯一的噪声组成是有背景泊松噪声产生的光子和探测器的读出噪声。所以,这种情况下的信噪比表达式为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"8"}],"data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702498&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702498&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702498&type=middle"}}}],"id":"gxjmgc-25-10-2584-E8"}}]},{"name":"p","data":[{"name":"text","data":"其中"},{"name":"italic","data":[{"name":"text","data":"e"}]},{"name":"sub","data":[{"name":"text","data":"n"}]},{"name":"text","data":"为探测器的读出噪声。在通过单个像素阈值探测时,为保证最小虚警率要求SNR "},{"name":"text","data":">"},{"name":"text","data":" 6。当然,速度匹配滤波、中值堆栈技术 "},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"11","type":"bibr","rid":"b11","data":[{"name":"text","data":"11"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"12","type":"bibr","rid":"b12","data":[{"name":"text","data":"12"}]}}],"rid":["b11","b12"],"text":"11-12","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"等处理算法能降低需要的"},{"name":"italic","data":[{"name":"text","data":"SNR"}]},{"name":"text","data":"阈值,通过多个成像帧频改善性能。当读出噪声高于背景产生的光子时,EM CCD将发挥增益作用。"}]},{"name":"p","data":[{"name":"text","data":"由于积分时间被目标的角速度限制,最大值等于通过单个像素的运动时间,即有:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"9"}],"data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702512&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702512&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702512&type=middle"}}}],"id":"gxjmgc-25-10-2584-E9"}}]},{"name":"p","data":[{"name":"text","data":"其中"},{"name":"italic","data":[{"name":"text","data":"ω"}]},{"name":"text","data":"是目标角速度。令"},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"为探测器的像元视场,即有"},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"="},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":"/"},{"name":"italic","data":[{"name":"text","data":"f"}]},{"name":"text","data":"。当背景噪声为主时,读出噪声取0,则最优信噪比为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"10"}],"data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702525&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702525&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702525&type=middle"}}}],"id":"gxjmgc-25-10-2584-E10"}}]},{"name":"p","data":[{"name":"text","data":"由信噪比公式(10) 得出二个重要约束:其一是读出噪声的平方必须小于背景产生的噪声;二是有效的点扩散函数小于像素尺度。搜索望远镜通常为短焦距大视场,此时背景噪声占主导,导致单像元立体角较大。在望远镜设计时除探测性能外,还要均衡考虑视场角、帧频、测量精度等指标。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3"}],"title":[{"name":"text","data":"地基GEO目标探测"}],"level":"1","id":"s3"}},{"name":"p","data":[{"name":"text","data":"地基观测站对空间目标进行观测受到大气透过率、大气背景辐射及目标运动速度等的影响;而GEO目标的观测还受到目标暗弱和恒星背景复杂等因素的影响,主要面临搜索效率不高和目标识别率低的问题"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.1"}],"title":[{"name":"text","data":"大气透过率"}],"level":"2","id":"s3-1"}},{"name":"p","data":[{"name":"text","data":"大气透过率分为上行透过率和下行透过率。对于空间目标来说,轨道高,远离大气层,透过率通常按下行考虑。受到大气吸收带影响,天顶处透过率随波长的变化如"},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"所示。式(11) 给出了不同仰角的透过率关系。"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"11"}],"data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702541&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702541&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702541&type=middle"}}}],"id":"gxjmgc-25-10-2584-E11"}}]},{"name":"fig","data":{"id":"Figure2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"text","data":"大气透过率与波长的关系"}]},{"lang":"en","label":[{"name":"text","data":"Fig 2"}],"title":[{"name":"text","data":"Relationship between atmospheric transmittance and wavelength"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702562&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702562&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702562&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"其中:"},{"name":"italic","data":[{"name":"text","data":"τ"}]},{"name":"sub","data":[{"name":"text","data":"atm0"}]},{"name":"text","data":"为天顶处的大气透过率,"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"text","data":"为仰角。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2"}],"title":[{"name":"text","data":"大气背景辐射"}],"level":"2","id":"s3-2"}},{"name":"p","data":[{"name":"text","data":"对地基探测GEO目标,海上晨昏(太阳在水平12°以下时)的背景辐射亮度在19.5 mv/arcsec"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":",天文夜情况下天空亮度下降到20~21 mv/arcsec"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"(太阳在水平18°以下)。天空亮度随着天顶角的增加而增加。大气散射在降低透过率的同时也增加了整个散射光能量。典型地面站显示30°仰角的背景辐射是天顶时的1.5倍,15°仰角时为2倍。"},{"name":"xref","data":{"text":"图 3","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3"}]}},{"name":"text","data":"给出了大气背景辐射随仰角的变化"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"13","type":"bibr","rid":"b13","data":[{"name":"text","data":"13"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"fig","data":{"id":"Figure3","caption":[{"lang":"zh","label":[{"name":"text","data":"图3"}],"title":[{"name":"text","data":"大气背景辐射随仰角的变化"}]},{"lang":"en","label":[{"name":"text","data":"Fig 3"}],"title":[{"name":"text","data":"Variation of atmospheric background radiation with elevation angle"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702587&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702587&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702587&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.3"}],"title":[{"name":"text","data":"GEO轨道目标的视角速度"}],"level":"2","id":"s3-3"}},{"name":"p","data":[{"name":"text","data":"静止轨道卫星相对地面是没有运动的。尽管如此,GEO区域的碎片并不维持在静止位置,受到太阳和月亮的摄动影响,倾角增加,产生南北速度分量。而GEO阵列上目标的高度不同则会产生东西相对速度分量,大倾角典型GEO目标的星下点变化如"},{"name":"xref","data":{"text":"图 4","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure4","caption":[{"lang":"zh","label":[{"name":"text","data":"图4"}],"title":[{"name":"text","data":"典型目标的星下点变化"}]},{"lang":"en","label":[{"name":"text","data":"Fig 4"}],"title":[{"name":"text","data":"Sub-stellar point change of typical target"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702612&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702612&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702612&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"在GEO轨道带下方的目标会有更高的轨道速度,因此相对静止的GEO位置会有向东的速度,那么在GEO上方的目标有相对向西的运动。因倾角引起的南北速度在GEO目标达到0赤纬时达到最大,在南北旋转点或赤纬等于倾角时等于0。从单个角速度转化为地面视速度。视速度是高度和倾角的函数,小于5″,"},{"name":"xref","data":{"text":"图 五","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 五"}]}},{"name":"text","data":"给出倾角为15°时GEO目标的视速度变化情况。"}]},{"name":"fig","data":{"id":"Figure5","caption":[{"lang":"zh","label":[{"name":"text","data":"图5"}],"title":[{"name":"text","data":"15°倾角时目标的典型视速度变化"}]},{"lang":"en","label":[{"name":"text","data":"Fig 5"}],"title":[{"name":"text","data":"Variation of typical apparent velocity of target at 15°tilt"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702631&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702631&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702631&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.4"}],"title":[{"name":"text","data":"GEO目标搜索模式"}],"level":"2","id":"s3-4"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.4.1"}],"title":[{"name":"text","data":"搜索效率"}],"level":"3","id":"s3-4-1"}},{"name":"p","data":[{"name":"text","data":"由于中高轨道目标的位置变化慢,光电监视主要采用大视场高效率的搜索方式,每晚尽可能多地对轨道带进行搜索。其中,搜索效率受到单视场大小、曝光时间、望远镜稳定时间、目标识别帧数等限制,要综合设计,合理考虑。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.4.2"}],"title":[{"name":"text","data":"搜索扫描方式"}],"level":"3","id":"s3-4-2"}},{"name":"p","data":[{"name":"text","data":"在对轨道带搜索的过程中,望远镜一般以固定步长的方式扫描关心的空域带,步长等于视场的大小。如果搜索方向从东向西,由于地球自转,搜索的每个天区与太阳的夹角相同,即不考虑月亮和天气的影响,每个天区的背景光是相同的,这样便于在相同的条件下比较同步轨道带的目标星等、反射率及尺寸等特征。"}]},{"name":"p","data":[{"name":"text","data":"针对每一个空域,望远镜可以采取凝视不动或跟踪恒星的方式,以便于发现目标。凝视模式的优点是对于同步轨道暗弱目标占用像素少、信噪比高、容易探测识别;缺点则是积分时间过长,恒星会拖尾成像,造成背景复杂,暗弱目标容易淹没在亮目标中。跟踪恒星方式是以当前位置恒星的运动速度引导望远镜运动,在这种模式下,恒星相对望远镜是固定的点目标,按积分时间的长短,目标有明显的拉线轨迹。"},{"name":"xref","data":{"text":"图 6","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6"}]}},{"name":"text","data":"给出了跟踪恒星方式时的目标形状,"},{"name":"xref","data":{"text":"图 7","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7"}]}},{"name":"text","data":"给出了凝视时目标的形状特征。"}]},{"name":"fig","data":{"id":"Figure6","caption":[{"lang":"zh","label":[{"name":"text","data":"图6"}],"title":[{"name":"text","data":"跟踪恒星方式下目标的图像效果"}]},{"lang":"en","label":[{"name":"text","data":"Fig 6"}],"title":[{"name":"text","data":"Target image captured in star tracking mode"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702649&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702649&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702649&type=middle"}]}},{"name":"fig","data":{"id":"Figure7","caption":[{"lang":"zh","label":[{"name":"text","data":"图7"}],"title":[{"name":"text","data":"凝视模式下目标图像效果"}]},{"lang":"en","label":[{"name":"text","data":"Fig 7"}],"title":[{"name":"text","data":"Target image captured in gazing mode"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702669&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702669&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702669&type=middle"}]}}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4"}],"title":[{"name":"text","data":"目标图像识别与处理"}],"level":"1","id":"s4"}},{"name":"p","data":[{"name":"text","data":"地基望远镜可通过搜索跟踪目标获取到目标的位置和亮度信息。受到背景天光、月光、恒星、视场渐晕等影响,在同一帧图像上不同中高轨道目标的信噪比不尽相同,采用传统的差帧法、局部自适应阈值分割等方法处理时,信噪比应优于6。为在更低信噪比下有效地识别目标,进而在相同口径下提升望远镜的探测能力,本文提出一种基于最优化原理的方法。"}]},{"name":"p","data":[{"name":"text","data":"为了能够获得仅含有目标与随机噪声残差的待叠加图像,构造了如下最优化问题:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"12"}],"data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702692&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702692&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702692&type=middle"}}}],"id":"gxjmgc-25-10-2584-E12"}}]},{"name":"p","data":[{"name":"text","data":"其中:矩阵"},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"D"}]}]},{"name":"text","data":"代表原始图像数据;矩阵"},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"A"}]}]},{"name":"text","data":"为低秩矩阵,代表图像背景,包含恒星,则最优化目标函数包含"},{"name":"italic","data":[{"name":"text","data":"Rank"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"A"}]}]},{"name":"text","data":")的最小化问题,"},{"name":"italic","data":[{"name":"text","data":"Rank"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"A"}]}]},{"name":"text","data":")是矩阵"},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"A"}]}]},{"name":"text","data":"的秩;矩阵"},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"T"}]}]},{"name":"text","data":"代表目标矩阵,由于目标相对于恒星及背景所占的像素数非常少,所以"},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"T"}]}]},{"name":"text","data":"为稀疏矩阵,则最优化目标函数包含‖"},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"T"}]}]},{"name":"text","data":"‖"},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"的最小化问题;矩阵"},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"ε"}]}]},{"name":"text","data":"代表噪声,则最优化目标函数包含的‖"},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"ε"}]}]},{"name":"text","data":"‖"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"的最小化问题。"}]},{"name":"p","data":[{"name":"text","data":"由于"},{"name":"italic","data":[{"name":"text","data":"Rank"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"A"}]}]},{"name":"text","data":")是一个非凸非光滑的函数,难以作为目标函数进行优化,但是"},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"A"}]}]},{"name":"text","data":"的核范数是"},{"name":"italic","data":[{"name":"text","data":"Rank"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"A"}]}]},{"name":"text","data":")的最紧凸包络,所以用最优化‖"},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"A"}]}]},{"name":"text","data":"‖"},{"name":"sub","data":[{"name":"text","data":"*"}]},{"name":"text","data":"来代替最优化"},{"name":"italic","data":[{"name":"text","data":"Rank"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"A"}]}]},{"name":"text","data":")。同样的,以‖"},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"T"}]}]},{"name":"text","data":"‖"},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"为目标函数的最优化问题是一个NP难问题,难以求解,常用的手段是用‖"},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"T"}]}]},{"name":"text","data":"‖"},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"替代。因此前述的最优化问题转化为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"13"}],"data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702713&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702713&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702713&type=middle"}}}],"id":"gxjmgc-25-10-2584-E13"}}]},{"name":"p","data":[{"name":"text","data":"利用拉格朗日乘子法"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"14","type":"bibr","rid":"b14","data":[{"name":"text","data":"14"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"进行加速,得到:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"14"}],"data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702735&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702735&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702735&type=middle"}}}],"id":"gxjmgc-25-10-2584-E14"}}]},{"name":"p","data":[{"name":"text","data":"通过上述数学过程求解获得矩阵"},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"T"}]}]},{"name":"text","data":",即消除恒星、背景以及噪声的图像,当然其中仍含有噪声残差,是由最优化求解残差造成的,但总体而言,"}]},{"name":"p","data":[{"name":"text","data":"前述处理过程会有效提升目标的信噪比。求解获得的目标图像如"},{"name":"xref","data":{"text":"图 8","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8"}]}},{"name":"text","data":"所示,目标在原始图像("},{"name":"xref","data":{"text":"图 8(a)","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8(a)"}]}},{"name":"text","data":")中的信噪比为3.09,在求解图像("},{"name":"xref","data":{"text":"图 8(b)","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8(b)"}]}},{"name":"text","data":")中的信噪比为4.63,可见目标信噪比明显提升。"}]},{"name":"fig","data":{"id":"Figure8","caption":[{"lang":"zh","label":[{"name":"text","data":"图8"}],"title":[{"name":"text","data":"求解图像与原始图像对比(目标细节)"}]},{"lang":"en","label":[{"name":"text","data":"Fig 8"}],"title":[{"name":"text","data":"Comparison between solution image and original image in target detail"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702754&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702754&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702754&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"整帧图像的识别结果如"},{"name":"xref","data":{"text":"图 9","type":"fig","rid":"Figure9","data":[{"name":"text","data":"图 9"}]}},{"name":"text","data":"所示。其中,图像差帧识别方法共识别目标6个,如"},{"name":"xref","data":{"text":"图 9(b)","type":"fig","rid":"Figure9","data":[{"name":"text","data":"图 9(b)"}]}},{"name":"text","data":"所示;最优化识别方法共识别目标7个,如"},{"name":"xref","data":{"text":"图 9(c)","type":"fig","rid":"Figure9","data":[{"name":"text","data":"图 9(c)"}]}},{"name":"text","data":"所示,所有识别目标均为非虚警目标。最优化识别方法要比图像差帧识别方法多识别1个目标,该目标为"},{"name":"xref","data":{"text":"图 8","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8"}]}},{"name":"text","data":"所示信噪比为3.09的目标。"}]},{"name":"fig","data":{"id":"Figure9","caption":[{"lang":"zh","label":[{"name":"text","data":"图9"}],"title":[{"name":"text","data":"最优化方法与图像差帧方法的识别效果对比"}]},{"lang":"en","label":[{"name":"text","data":"Fig 9"}],"title":[{"name":"text","data":"Comparison of recognition result between different methods"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702769&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702769&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1702769&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"5"}],"title":[{"name":"text","data":"结论"}],"level":"1","id":"s5"}},{"name":"p","data":[{"name":"text","data":"文章针对中高轨空间目标识别,提出了一种基于最优化原理的目标图像处理方法。该方法通过构造约束条件下的最优化问题,可以得到目标信噪比较高的求解图像,提高空间目标的识别率。实验结果表明,传统差帧法无法识别出的低信噪比目标经最优化处理后,目标信噪比有较大提升,并可以被识别出来。此外,本文还从目标光学特性、运动特性、大气影响、望远镜设计等多角度阐述了地基光电监视的最优化设计要素,可为中高轨目标的地基光电监视设备设计提供一定的参考。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"b1","label":"1","citation":[{"lang":"zh","text":[{"name":"text","data":"李振伟, 张涛, 张楠, 等.暗弱空间目标的高精度定位[J].光学 精密工程, 2015, 23(9): 2627-2634."}]},{"lang":"en","text":[{"name":"text","data":"LI Z W, ZHANG T, ZHANG N, et al.. High precision orientation of faint space objects[J]. Opt. Precision Eng., 2015, 23(9): 2627-2634. (in Chinese)"}]}]},{"id":"b2","label":"2","citation":[{"lang":"en","text":[{"name":"text","data":"RICHARD P. Simulation of telescope detectivity for GEO survey and tracking[C]. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, The Maui Economic Development Board, 2014."}]}]},{"id":"b3","label":"3","citation":[{"lang":"en","text":[{"name":"text","data":"FLOHRER T, SCHILDKNECHT T, MUSCI R. Proposed strategies for optical observations in a future European Space Surveillance network[J]. Advances in Space Research, 2008, 41(7): 1010-1021."}]}]},{"id":"b4","label":"4","citation":[{"lang":"en","text":[{"name":"text","data":"HENIZE K G, STANLEY J F, O'NEIL C A, et al.. Detection of orbital debris with GEODSS telescope[J]. SPIE, 1993, 1951: 76-84."}]}]},{"id":"b5","label":"5","citation":[{"lang":"en","text":[{"name":"text","data":"WOODS D F, SHAH R, JOHNSON J A, et al.. Space surveillance telescope: Focus and alignment of a three mirror telescope[J]. Optical Engineering, 2013, 52(5): 053604."}]}]},{"id":"b6","label":"6","citation":[{"lang":"zh","text":[{"name":"text","data":"赵有, 张伟, 高鹏骐, 等. 亚太地基光学空间观测系统(APOSOS)项目的介绍和进展[C]. 第六届全国空间碎片学术交流会, 国家国防科技工业局系统工程一司, 2011."}]},{"lang":"en","text":[{"name":"text","data":"ZHAO Y, ZHANG W, GAO P Q, et al.. Progress and outlook of APOSOS project[C]. Proceedings of Sixth National Conference on Space Debris, 2011.(in Chinese)"}]}]},{"id":"b7","label":"7","citation":[{"lang":"zh","text":[{"name":"text","data":"舒锐. 卫星目标识别与特征参数提取方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2010."},{"name":"uri","data":{"text":[{"name":"text","data":"http://cdmd.cnki.com.cn/Article/CDMD-10213-2011013348.htm"}]}}]},{"lang":"en","text":[{"name":"text","data":"SHU R. Research on Satellite Target Identification and Feature Extraction Method[D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese)"}]}]},{"id":"b8","label":"8","citation":[{"lang":"en","text":[{"name":"text","data":"UETSUHARA M, IKOMA N. Faint debris detection by particle based track-before-detect method[C]. Proceedings of the 2014 Advanced Maui Optical and Space Surveillance Technologies Conference, The Maui Economic Development Board, 2014."}]}]},{"id":"b9","label":"9","citation":[{"lang":"en","text":[{"name":"text","data":"DAO P, RAST R, SCHLAEGEL W, et al.. Track-before-detect algorithm for faint moving objects based on random sampling and consensus[C]. Proceedings of the 2014 Advanced Maui Optical and Space Surveillance Technologies Conference, The Maui Economic Development Boar, 2014."}]}]},{"id":"b10","label":"10","citation":[{"lang":"en","text":[{"name":"text","data":"KRAG W E. Visible magnitude of typical satellites in synchronous orbits[R]. ESD-TR-74-278. Lexington: Massachusetts Institute of Technology, 1974."}]}]},{"id":"b11","label":"11","citation":[{"lang":"en","text":[{"name":"text","data":"YANAGISAWA T, KUROSAKI H, NAKAJIMA A. Present status of space debris optical observational facility of JAXA at Mt. Nyukasa[C]. Proceedings of the 5th European Conference on Space Debris, ESA, 2009."}]}]},{"id":"b12","label":"12","citation":[{"lang":"en","text":[{"name":"text","data":"FERRERO A, FELLETTI R, HANLON L, et al.. Electron-multiplying CCD astronomical photometry[J]. SPIE, 2010, 7536: 75360Q."}]}]},{"id":"b13","label":"13","citation":[{"lang":"zh","text":[{"name":"text","data":"张晓祥. 空间目标光学观测研究[D]. 南京: 中国科学院紫金山天文台, 2007."},{"name":"uri","data":{"text":[{"name":"text","data":"http://hea.pmo.ac.cn/handle/332002/9684"}]}}]},{"lang":"en","text":[{"name":"text","data":"ZHANG X X. Research in Optical Observation for Space Objects[D]. Nanjing: Purple Mountain Observatory Chinese Academy of Science, 2007(in Chinese)"}]}]},{"id":"b14","label":"14","citation":[{"lang":"zh","text":[{"name":"text","data":"同济大学数学系. 高等数学(下)[M]. 6版. 北京: 高等教育出版社, 2007: 113-115."}]},{"lang":"en","text":[{"name":"text","data":"Department of Mathematics of Tongji University.Advanced Mathematics[M]. Beijing:Higher Education Press, 2007:113-115.(in Chinese)"}]}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.3788/OPE.20172510.2584","clc":[[{"name":"text","data":"V556"}]],"dc":[],"publisherid":"gxjmgc-25-10-2584","citeme":[],"fundinggroup":[{"lang":"zh","text":[{"name":"text","data":"国家863高技术研究发展计划资助项目(No.2011AAXX2035)"}]}],"history":{"received":"2017-06-01","accepted":"2017-07-10","ppub":"2017-10-25","opub":"2020-06-15"},"copyright":{"data":[{"lang":"zh","data":[{"name":"text","data":"版权所有©《光学 精密工程》编辑部2017"}],"type":"copyright"},{"lang":"en","data":[{"name":"text","data":"Copyright ©2017 Optics and Precision Engineering. All rights reserved."}],"type":"copyright"}],"year":"2017"}},"appendix":[],"type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"光学 精密工程","issue":"10","volume":"25","originalSource":[]}