{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"柔性硫系玻璃红外光纤传像束的制备与性能测试"}]},{"lang":"en","data":[{"name":"text","data":"Fabrication and optical performances measurements of flexible chalcogenide imaging fiber bundles"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"王","givenname":"形锋","namestyle":"eastern","prefix":""},{"lang":"en","surname":"WANG","givenname":"Xing-feng","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff2","text":"2"}],"role":["first-author"],"bio":[{"lang":"zh","text":["王形锋(1990-), 男, 陕西安康人, 博士研究生, 2015年于西北大学获得学士学位, 主要研究方向为光学设计, 红外成像系统。E-mail:wangxingfeng2015@opt.cn"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"王形锋"}]},{"name":"text","data":"(1990-), 男, 陕西安康人, 博士研究生, 2015年于西北大学获得学士学位, 主要研究方向为光学设计, 红外成像系统。E-mail:"},{"name":"text","data":"wangxingfeng2015@opt.cn"}]]}],"email":"wangxingfeng2015@opt.cn","deceased":false},{"name":[{"lang":"zh","surname":"闫","givenname":"兴涛","namestyle":"eastern","prefix":""},{"lang":"en","surname":"YAN","givenname":"Xing-tao","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":["corresp"],"corresp":[{"rid":"cor1","lang":"zh","text":" 闫兴涛(1986-), 男, 陕西西安人, 助理研究员, 2008年于西北工业大学获得学士学位, 2013年于中国科学院西安光学精密机械研究所获得博士学位, 主要从事红外成像光学系统设计与研制方面的研究。E-mail:yanxt@opt.ac.cn YAN Xing-tao, E-mail: yanxt@opt.ac.cn","data":[{"name":"text","data":" 闫兴涛(1986-), 男, 陕西西安人, 助理研究员, 2008年于西北工业大学获得学士学位, 2013年于中国科学院西安光学精密机械研究所获得博士学位, 主要从事红外成像光学系统设计与研制方面的研究。E-mail:yanxt@opt.ac.cn YAN Xing-tao, E-mail: yanxt@opt.ac.cn"}]}],"email":"yanxt@opt.ac.cn","deceased":false},{"name":[{"lang":"zh","surname":"陈","givenname":"国庆","namestyle":"eastern","prefix":""},{"lang":"en","surname":"CHEN","givenname":"Guo-qing","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff2","text":"2"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"许","givenname":"彦涛","namestyle":"eastern","prefix":""},{"lang":"en","surname":"XU","givenname":"Yan-tao","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"1","text":"中国科学院 西安光学精密机械研究所, 陕西 西安 710119","data":[{"name":"text","data":"中国科学院 西安光学精密机械研究所, 陕西 西安 710119"}]},{"lang":"en","label":"1","text":"Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China","data":[{"name":"text","data":"Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China"}]}]},{"id":"aff2","intro":[{"lang":"zh","label":"2","text":"中国科学院大学 材料科学与光电技术学院, 北京 101408","data":[{"name":"text","data":"中国科学院大学 材料科学与光电技术学院, 北京 101408"}]},{"lang":"en","label":"2","text":"College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China","data":[{"name":"text","data":"College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"讨论了红外光纤传像束的学术意义和制备工艺,制备了一种硫系玻璃红外光纤传像束并进行了专门的性能测试。选用As"},{"name":"sub","data":[{"name":"text","data":"40"}]},{"name":"text","data":"S"},{"name":"sub","data":[{"name":"text","data":"58"}]},{"name":"text","data":"Se"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"、As"},{"name":"sub","data":[{"name":"text","data":"40"}]},{"name":"text","data":"S"},{"name":"sub","data":[{"name":"text","data":"60"}]},{"name":"text","data":"作为芯棒和皮管玻璃组分,采用管棒法拉制成纤,利用人机结合的排丝工艺制备出了单丝直径为50 μm,纤芯直径为40 μm,576元正方形排列的红外光纤传像束。搭建了相应的实验测试平台,对光纤束排列规则度、断丝率、光学效率及传像束引起系统调制传递函数(MTF)下降量等指标进行了测试。测试表明,传像束断丝率为2.7%,衰减损耗低于0.5 dB/m,光学效率约为31%,在红外光纤传像系统中光纤传像束引起的MTF下降量小于10%。最后,利用研制的红外传像束完成了红外成像实验,结果表明,红外光纤传像束能够实现良好的红外成像。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"The academic meanings of infrared imaging fiber bundles were researched and their fabrication technologies were given. A kinds of flexible chalcogenide infrared imaging fiber bundles were fabricated, and their characteristics were tested. By taking As"},{"name":"sub","data":[{"name":"text","data":"40"}]},{"name":"text","data":"S"},{"name":"sub","data":[{"name":"text","data":"58"}]},{"name":"text","data":"Se"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":" and As"},{"name":"sub","data":[{"name":"text","data":"40"}]},{"name":"text","data":"S"},{"name":"sub","data":[{"name":"text","data":"60"}]},{"name":"text","data":" as the rod and tube materials, the fibers were drawn by rod-in-tube technique. The infrared imaging fiber bundle with a core diameter of 40 μm and a cladding diameter of 50 μm was prepared by man-machine-integration technique and it shows squared arrangement which incorporates 576 individual fibers. A special experimental equipment was constructed. The properties of this imaging fiber bundle including spatial arrangement and shaping, blind-fiber ratio and optical transmission efficiency were measured, and the decrease of Modulation Transfer Function (MTF) in the system caused by infrared imaging fiber bundle were measured. Experimental results indicate that the fiber bundle shows a good spatial arrangement and shaping. The blind-fiber ratio is 2.7%, fiber attenuation loss is lower than 0.5 dB/m, and the optical efficiency is almost 31%. Moreover, The decrease of MTF resulted from the fiber bundle in the system is less than 10%. Finally, an infrared imaging experiment was implemented, and the result shows that fine infrared thermal images have been delivered through this system."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"红外光纤传像束"}],[{"name":"text","data":"红外成像技术"}],[{"name":"text","data":"光学效率"}],[{"name":"text","data":"硫系玻璃光纤"}],[{"name":"text","data":"调制传递函数"}]]},{"lang":"en","data":[[{"name":"text","data":"infrared imaging fiber bundle"}],[{"name":"text","data":"infrared imaging technology"}],[{"name":"text","data":"transmission efficiency"}],[{"name":"text","data":"chalcogenide glass fiber"}],[{"name":"text","data":"MTF"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"1"}],"title":[{"name":"text","data":"引言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"红外光纤以及红外光纤传像束近年来被广泛地应用在医学和工业"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"3","type":"bibr","rid":"b3","data":[{"name":"text","data":"3"}]}}],"rid":["b1","b2","b3"],"text":"1-3","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"等诸多领域。国外红外光纤制备技术较为成熟,较早即开展了相关研究:1985年Mitsunori Saito等利用As-S玻璃光纤制备了可用于热成像的红外传像束"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}},{"name":"text","data":"]"}]},{"name":"text","data":";2006年Tel-Aviv University研制出的卤化银材料红外光纤传像束可以应用在医学、工业等领域"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"5","type":"bibr","rid":"b5","data":[{"name":"text","data":"5"}]}},{"name":"text","data":"]"}]},{"name":"text","data":";2010年美国AMI公司研制了一系列机械性能及传像效果优良的As-S光纤传像束,其中一款42×69元、填充系数达61.5%的10-M-2光纤传像束成功应用于海军装备"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"6","type":"bibr","rid":"b6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"; 2014年开始,可工作在复杂电磁环境中的8~12 μm波段高性能热像传输光纤被广泛关注,美国海军已计划研制512×512元热像光纤传像束"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"7","type":"bibr","rid":"b7","data":[{"name":"text","data":"7"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"; 2016年日本东京大学利用其研制的包含多元空心抗谐振红外光纤传像束的内窥镜实现了37 ℃条件下的红外成像,温度分辨率达到0.7 ℃,可用于癌症和恶性肿瘤的早期检测"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"8","type":"bibr","rid":"b8","data":[{"name":"text","data":"8"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"国内关于红外光纤传像束的应用研究起步较晚,目前主要集中在高性能红外光纤材料的制备方面。常见的红外光纤主要有重金属氧化物玻璃红外光纤、氟化物玻璃红外光纤、硫系玻璃红外光纤、复合材料红外光纤等"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",而硫系玻璃材料因其具有热拉伸效果好、宽的红外传输窗口、良好的物理化学性能等优点,而被广泛用于制备红外光纤。根据文献["},{"name":"xref","data":{"text":"10","type":"bibr","rid":"b10","data":[{"name":"text","data":"10"}]}},{"name":"text","data":"]所述,现今在1.5~6 μm波段最好的光纤是基于As"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"S"},{"name":"sub","data":[{"name":"text","data":"3"}]},{"name":"text","data":"化合物硫系玻璃拉制而成的"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"10","type":"bibr","rid":"b10","data":[{"name":"text","data":"10"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。因此国内外包括北京玻璃研究所、江苏师范大学、澳大利亚国立大学以及中弗罗里达大学等在内的诸多单位均针对As"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"S"},{"name":"sub","data":[{"name":"text","data":"3"}]},{"name":"text","data":"化合物硫系玻璃红外光纤的制备进行了研究。北京玻璃研究院在1999年研制出的10 000元,端面尺寸为6.4×6.3 mm的红外光纤传像束,可以获取可见的热像轮廓,但分辨率较低"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"11","type":"bibr","rid":"b11","data":[{"name":"text","data":"11"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"; 2015年张斌等利用堆拉法成功研制了810 000元,单丝直径10 μm,纤芯直径9 μm的红外光纤传像束,但是其成像质量并不理想"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"12","type":"bibr","rid":"b12","data":[{"name":"text","data":"12"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"13","type":"bibr","rid":"b13","data":[{"name":"text","data":"13"}]}}],"rid":["b12","b13"],"text":"12-13","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":";2016年,刘硕等采用动态蒸馏提纯技术,配合优化的均化熔融和低温焠冷法技术,制备了高纯度的硫系玻璃红外光纤,传输背景损耗维持在0.2 dB/m,但对其性能的测试并不全面"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"14","type":"bibr","rid":"b14","data":[{"name":"text","data":"14"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"本文选用As"},{"name":"sub","data":[{"name":"text","data":"40"}]},{"name":"text","data":"S"},{"name":"sub","data":[{"name":"text","data":"58"}]},{"name":"text","data":"Se"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"、As"},{"name":"sub","data":[{"name":"text","data":"40"}]},{"name":"text","data":"S"},{"name":"sub","data":[{"name":"text","data":"60"}]},{"name":"text","data":"作为芯棒和皮管玻璃组分,采用管棒法拉制成纤,通过人机结合的方式制备出了单丝直径50 μm的红外光纤传像束,并搭建了实验平台,对其性能进行了测试。利用该光纤传像束完成了红外成像实验,成像效果良好。为今后红外光纤传像束在各领域内的应用提供了技术储备。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2"}],"title":[{"name":"text","data":"制备工艺过程"}],"level":"1","id":"s2"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.1"}],"title":[{"name":"text","data":"光纤参数及排列方式选择"}],"level":"2","id":"s2-1"}},{"name":"p","data":[{"name":"text","data":"作为传像元件,光纤传像束的填充系数是影响传像效率及效果的一个重要指标。通常,以间距密致排列、纤芯直径为"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"text","data":"′的圆形光纤组成的光纤传像束,其填充系数表示为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"1"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1703921&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1703921&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1703921&type=middle"}}}],"id":"gxjmgc-25-12-3137-E1"}}]},{"name":"p","data":[{"name":"text","data":"其中"},{"name":"inlineformula","data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704244&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704244&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704244&type=middle"}}}]},{"name":"text","data":"为光纤的芯包比。由于光纤包层厚度不可能为零,且存在加工工艺和光纤缺陷,正方形排列光纤传像束的填充系数小于78.5%,正六角形排列的则小于90.7%。"}]},{"name":"p","data":[{"name":"text","data":"光纤的芯包比不仅决定了光纤传像束的填充系数还决定了其传光性能。同样单丝直径下,光纤包层太厚会使传像束填充系数偏小,包层太薄又会使传像光纤间易发生串扰,影响传像效果。为确定合适的光纤芯包比,利用COMSOL软件对光纤进行建模分析,结果如"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"所示(彩图见期刊电子版)。当光纤直径不小于18 μm时,能量均在光纤内传输而不溢出包层,考虑到实际工艺水平与光纤的稳定性,最终确定光纤芯径与直径分别为40 μm与50 μm。为确定光纤传像束的排列方式,利用ASAP软件建立了红外光纤传像系统模型"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"15","type":"bibr","rid":"b15","data":[{"name":"text","data":"15"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",如"},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"所示,对系统耦合效率进行了仿真。结果显示:在其他镜组参数一定的情况下,虽然传像束六角形排列的填充系数较高,但在利用光纤传像束进行传像时,由于探测器像元是离散的正方形排列,为保证耦合效率及系统分辨率,应保证单根光纤与单个像元一对一匹配。因此选择光纤传像束为正方形密致排列。"}]},{"name":"fig","data":{"id":"Figure1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"text","data":"光纤纤芯与纤径比一定时能量分布随纤径变化关系"}]},{"lang":"en","label":[{"name":"text","data":"Fig 1"}],"title":[{"name":"text","data":"Distribution of transmission energy changes with fiber diameter with a constant ratio of fiber core to fiber diameter"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1703940&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1703940&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1703940&type=middle"}]}},{"name":"fig","data":{"id":"Figure2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"text","data":"ASAP建立的红外光纤传像束系统模型"}]},{"lang":"en","label":[{"name":"text","data":"Fig 2"}],"title":[{"name":"text","data":"Simulation model of IR system with imaging fiber bundle by ASAP"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1703966&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1703966&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1703966&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.2"}],"title":[{"name":"text","data":"红外光纤制备"}],"level":"2","id":"s2-2"}},{"name":"p","data":[{"name":"text","data":"根据以上参数进行光纤拉制。芯棒玻璃组分选用As"},{"name":"sub","data":[{"name":"text","data":"40"}]},{"name":"text","data":"S"},{"name":"sub","data":[{"name":"text","data":"58"}]},{"name":"text","data":"Se"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":",采用反复蒸馏除水和开放式动态蒸馏技术相结合的除杂工艺进行制备;皮管玻璃组分为As"},{"name":"sub","data":[{"name":"text","data":"40"}]},{"name":"text","data":"S"},{"name":"sub","data":[{"name":"text","data":"60"}]},{"name":"text","data":",其制备过程与芯棒相同。如"},{"name":"xref","data":{"text":"图 3","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3"}]}},{"name":"text","data":"所示,采用一次成型的方法,将石英管既作为熔制容器,又作为成型模具,对芯棒和皮管进行淬冷成型。其中,芯棒玻璃和皮管玻璃分别采用压缩空气风冷和压缩空气加水雾的方法使玻璃液快速降温成型。"}]},{"name":"fig","data":{"id":"Figure3","caption":[{"lang":"zh","label":[{"name":"text","data":"图3"}],"title":[{"name":"text","data":"石英管结构"}]},{"lang":"en","label":[{"name":"text","data":"Fig 3"}],"title":[{"name":"text","data":"Configuration of quartz tube"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1703990&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1703990&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1703990&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"制备出质量优良的预制棒如"},{"name":"xref","data":{"text":"图 4(a)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(a)"}]}},{"name":"text","data":"、"},{"name":"xref","data":{"text":"(b)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"(b)"}]}},{"name":"text","data":"所示。光纤采用传统的棒管法拉制,通过控制温度、惰性气氛压力、送棒速度和卷丝速度等条件,成功制备出单丝直径50 μm的红外光纤,如"},{"name":"xref","data":{"text":"图 4(d)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(d)"}]}},{"name":"text","data":"所示。每次拉制长度超过10 km,丝径误差控制在±1%范围内。"}]},{"name":"fig","data":{"id":"Figure4","caption":[{"lang":"zh","label":[{"name":"text","data":"图4"}],"title":[{"name":"text","data":"红外光纤传像系统模型"}]},{"lang":"en","label":[{"name":"text","data":"Fig 4"}],"title":[{"name":"text","data":"System model of infrored fiber bundle"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704012&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704012&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704012&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"单根光纤的损耗测试采用传统的截断法,在室温下通过与BRUKER VERTEX70型傅里叶光谱仪配套的外接光纤测试系统进行测试,所用光纤长度为3 m,剪断后长度为1 m。光纤切割使用PHOTON KINETICS的光纤切割刀,测试前断面均未处理,光纤和传像束端面观测采用OLYMPUS-BX51M显微镜。经测试,本文制备的As-S光纤的损耗光谱如"},{"name":"xref","data":{"text":"图 5","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5"}]}},{"name":"text","data":"所示,可见在3~5 μm的中红外波段损耗基线平均小于0.5 dB/m。由于样品为未提纯试样,所以在3 μm处有一定水的吸收峰,同时,在4 μm处有较严重的S-H吸收峰。"}]},{"name":"fig","data":{"id":"Figure5","caption":[{"lang":"zh","label":[{"name":"text","data":"图5"}],"title":[{"name":"text","data":"As-S无涂覆光纤的损耗光谱"}]},{"lang":"en","label":[{"name":"text","data":"Fig 5"}],"title":[{"name":"text","data":"Optical attenuation of As-S fiber without coating"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704036&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704036&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704036&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.3"}],"title":[{"name":"text","data":"光纤传像束制备"}],"level":"2","id":"s2-3"}},{"name":"p","data":[{"name":"text","data":"光纤传像束的制作采用人工与排丝机结合的排丝方式进行。研制的排丝机如"},{"name":"xref","data":{"text":"图 6(a)","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6(a)"}]}},{"name":"text","data":"、"},{"name":"xref","data":{"text":"(b)","type":"fig","rid":"Figure6","data":[{"name":"text","data":"(b)"}]}},{"name":"text","data":"所示。排丝机通过高精度光栅尺及精密电机控制来实现对单层光纤的排列,通过排丝机操作柜界面为实现位置控制及排丝数量记录,待排至指定数量即可完成一层光纤排列,对该层光纤进行环氧胶黏结固定,取出残留双面胶层,成为单层光纤规格为64元的备用单片光纤束,如"},{"name":"xref","data":{"text":"图 6(c)","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6(c)"}]}},{"name":"text","data":"。随后通过人工排列实现光纤层间的组合。本文选择研制线阵端为192×3元,面阵端为64×9元光纤传像束。最后,采用专门制作的光纤夹具对传像束进行装夹,制成的红外光纤传像束端面照片如"},{"name":"xref","data":{"text":"图 6(d)","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6(d)"}]}},{"name":"text","data":"、"},{"name":"xref","data":{"text":"(e)","type":"fig","rid":"Figure6","data":[{"name":"text","data":"(e)"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure6","caption":[{"lang":"zh","label":[{"name":"text","data":"图6"}],"title":[{"name":"text","data":"(a) 红外光纤排丝机操作台(b)红外光纤排丝机实物照片(c)红外光纤排丝机排列的单层光纤束示例(d)封装后线阵端照片(e)封装后面阵端照片"}]},{"lang":"en","label":[{"name":"text","data":"Fig 6"}],"title":[{"name":"text","data":"(a) Schematic diagram of arraying filament machine; (b) Photo of arraying filament machine; (c) Single liner array of fiber by arraying filament machine; (d) Photo of liner array end after encapsulation; (e) Plant array end after encapsulation."}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704054&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704054&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704054&type=middle"}]}}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3"}],"title":[{"name":"text","data":"性能测试"}],"level":"1","id":"s3"}},{"name":"p","data":[{"name":"text","data":"红外光纤传像束的性能指标包括传像束端面排列规则度、断丝率、光学效率和调制传递函数等,为了对所研制光纤传像束的这些特性进行检测,本文专门设计并搭建了测试平台。用到的仪器主要包括:西安亚博仪器科技有限公司生产的温度调节范围0~500 ℃的电烙铁,孔径60 mm、波长范围2~14 μm、温度稳定精度±1 ℃的面源黑体,前置物镜(焦距50 mm & 100 mm),待测红外光纤束,自行研制的放大率为-0.6的耦接镜及法国SOFRADIR公司生产的320×256中波HgCdTe探测器。"}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.1"}],"title":[{"name":"text","data":"光纤排列规则度测试"}],"level":"2","id":"s3-1"}},{"name":"p","data":[{"name":"text","data":"光纤排列规则度测试实验装置如"},{"name":"xref","data":{"text":"图 7","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7"}]}},{"name":"text","data":"所示。利用现有100 mm焦距标准镜头直接安装在红外探测器上构成一个红外相机,将50 mm焦距镜头口朝向该红外相机,则50 mm焦距镜头和正对的100 mm焦距镜头将构成一个放大率为2的中继系统,将光纤传像束面阵端置于50 mm镜头后焦面处,则在探测器上将得到像质良好的传像束2倍放大像。电烙铁照亮光纤传像束后获得的全亮图像如"},{"name":"xref","data":{"text":"图 8","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure7","caption":[{"lang":"zh","label":[{"name":"text","data":"图7"}],"title":[{"name":"text","data":"光纤传像束排列规则度测试实验照片"}]},{"lang":"en","label":[{"name":"text","data":"Fig 7"}],"title":[{"name":"text","data":"Photo of spatial arrangement and shapingmeasurement experimentequipment of imaging fiber bundle"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704074&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704074&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704074&type=middle"}]}},{"name":"fig","data":{"id":"Figure8","caption":[{"lang":"zh","label":[{"name":"text","data":"图8"}],"title":[{"name":"text","data":"实验用光纤传像束端面红外图像"}]},{"lang":"en","label":[{"name":"text","data":"Fig 8"}],"title":[{"name":"text","data":"Infrared image of imaging fiber bundle"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704098&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704098&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704098&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"由图可见,光纤排列较整齐,偏差主要集中在左右两端。同时存在由胶层厚度不等引起的局部凸起。但是这些缺陷并不严重。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2"}],"title":[{"name":"text","data":"断丝率"}],"level":"2","id":"s3-2"}},{"name":"p","data":[{"name":"text","data":"采用如"},{"name":"xref","data":{"text":"图 7","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7"}]}},{"name":"text","data":"所示实验装置,采集端面全亮图像后,通过设定灰度阈值,将阈值以下像元对应的光纤定义为断丝,采用遍历算法取出断丝从而计算出断丝率。在该线阵端光纤为192×3元,对应面阵端光纤为64×9元的规格排列的传像束中,通光性能良好的光纤共560根,因此光纤传像束断丝率为2.7%。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.3"}],"title":[{"name":"text","data":"光学效率"}],"level":"2","id":"s3-3"}},{"name":"p","data":[{"name":"text","data":"由于红外光纤传像束的特殊性,目前难以通过传统的平行光管加功率计(或积分球)的形式直接测得"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"16","type":"bibr","rid":"b16","data":[{"name":"text","data":"16"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",采用自行设计的测试系统实现光纤传像束光学效率的测试。基本测试方法如下:"}]},{"name":"p","data":[{"name":"text","data":"(1) 利用标准黑体、红外探测器和红外镜头等搭建如"},{"name":"xref","data":{"text":"图 9","type":"fig","rid":"Figure9","data":[{"name":"text","data":"图 9"}]}},{"name":"text","data":"所示实验装置,设置标准面源黑体至固定温度并保持恒定,在前置物镜前放置可调光阑,以实现与光纤传像束数值孔径的匹配;物镜所成黑体像经后继耦接镜成像至红外探测器上,该耦接镜满足100%冷光阑效率及一定放大率;设置探测器积分时间、增益、偏置等参数为定值,采集黑体图像,其中一定区域的灰度值(DN)即代表输入的光能量,记为"},{"name":"italic","data":[{"name":"text","data":"I"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"。"}]},{"name":"fig","data":{"id":"Figure9","caption":[{"lang":"zh","label":[{"name":"text","data":"图9"}],"title":[{"name":"text","data":"红外光纤传像光学效率测试装置图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 9"}],"title":[{"name":"text","data":"Schematic diagram of optical transmission efficiency measurement experiment"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704154&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704154&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704154&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"(2) 保持步骤(1)中放置的前置物镜及黑体位置不变,并确保黑体温度相同,将光纤传像束入射端放置在前置物镜像面处,并使其出射端位于后继耦接镜物面处,则黑体图像经红外光纤传像束及耦接镜传输成像至红外探测器上,采集记录该黑体图像,并取与步骤一相同区域的灰度值,记作"},{"name":"italic","data":[{"name":"text","data":"I"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"(3) 由于步骤(1)、(2)中光学系统除引入光纤传像束外,其他光学元件未改变,因此光纤传像束的光学效率为("},{"name":"italic","data":[{"name":"text","data":"I"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"/"},{"name":"italic","data":[{"name":"text","data":"I"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":")×100%。"}]},{"name":"p","data":[{"name":"text","data":"(4) 为保证测量精度,调整黑体辐射温度在60~100 ℃范围内,每隔10 ℃重复上述过程,可得到不同温度下红外光纤传像束的光学效率。结果如"},{"name":"xref","data":{"text":"表 1","type":"table","rid":"Table1","data":[{"name":"text","data":"表 1"}]}},{"name":"text","data":"所示,可得所研制红外光纤传像束的光学效率约为31%,考虑到该传像束的填充系数仅为50.26%,因此该传像束透过率良好。"}]},{"name":"table","data":{"id":"Table1","caption":[{"lang":"zh","label":[{"name":"text","data":"表1"}],"title":[{"name":"text","data":"实验实测光纤传像束总光学效率值"}]},{"lang":"en","label":[{"name":"text","data":"Table 1"}],"title":[{"name":"text","data":"Transmittance efficiency of imaging fiber bundle acquired by experiment measurement"}]}],"note":[],"table":[{"head":[[{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"Temperature/℃"}]},{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"Transmittance efficiency/%"}]}]],"body":[[{"align":"center","style":"class:table_top_border2","data":[{"name":"text","data":"60"}]},{"align":"center","style":"class:table_top_border2","data":[{"name":"text","data":"31.18"}]}],[{"align":"center","data":[{"name":"text","data":"70"}]},{"align":"center","data":[{"name":"text","data":"31.33"}]}],[{"align":"center","data":[{"name":"text","data":"80"}]},{"align":"center","data":[{"name":"text","data":"30.53"}]}],[{"align":"center","data":[{"name":"text","data":"90"}]},{"align":"center","data":[{"name":"text","data":"32.01"}]}],[{"align":"center","style":"class:table_bottom_border","data":[{"name":"text","data":"100"}]},{"align":"center","style":"class:table_bottom_border","data":[{"name":"text","data":"31.37"}]}]],"foot":[]}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.4"}],"title":[{"name":"text","data":"调制传递函数MTF"}],"level":"2","id":"s3-4"}},{"name":"p","data":[{"name":"text","data":"由于光纤传像束用于成像系统中,为评价其成像性能,本文采用对比度法测量系统的调制传递函数"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"17","type":"bibr","rid":"b17","data":[{"name":"text","data":"17"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"19","type":"bibr","rid":"b19","data":[{"name":"text","data":"19"}]}}],"rid":["b17","b18","b19"],"text":"17-19","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":",并通过对比加入光纤传像束前后目标图像对比度的下降,得到光纤传像束引起的系统MTF下降。实验原理与3.3节测量光学效率("},{"name":"xref","data":{"text":"图 9","type":"fig","rid":"Figure9","data":[{"name":"text","data":"图 9"}]}},{"name":"text","data":"所示)类似,只需将孔径光阑换成栅格即可。通过该装置分别对5 mm、3 mm和2 mm宽栅格目标图像成像,如"},{"name":"xref","data":{"text":"图 10","type":"fig","rid":"Figure10","data":[{"name":"text","data":"图 10"}]}},{"name":"text","data":"所示。"},{"name":"xref","data":{"text":"图 10(a)","type":"fig","rid":"Figure10","data":[{"name":"text","data":"图 10(a)"}]}},{"name":"text","data":"、"},{"name":"xref","data":{"text":"(c)","type":"fig","rid":"Figure10","data":[{"name":"text","data":"(c)"}]}},{"name":"text","data":"、"},{"name":"xref","data":{"text":"(e)","type":"fig","rid":"Figure10","data":[{"name":"text","data":"(e)"}]}},{"name":"text","data":"为红外镜头拍摄的5 mm、3 mm、2 mm宽栅格图像及对比度曲线,"},{"name":"xref","data":{"text":"图 10(b)","type":"fig","rid":"Figure10","data":[{"name":"text","data":"图 10(b)"}]}},{"name":"text","data":"、"},{"name":"xref","data":{"text":"(d)","type":"fig","rid":"Figure10","data":[{"name":"text","data":"(d)"}]}},{"name":"text","data":"、"},{"name":"xref","data":{"text":"(f)","type":"fig","rid":"Figure10","data":[{"name":"text","data":"(f)"}]}},{"name":"text","data":"为经红外光纤传像束拍摄的5 mm、3 mm、2 mm宽栅格图像及对比度曲线。图中对比度曲线的横坐标为像元数,纵坐标为对应的灰度值。根据式(2),计算得出系统在加入传像束前后的对比度传递函数值如"},{"name":"xref","data":{"text":"表 2","type":"table","rid":"Table2","data":[{"name":"text","data":"表 2"}]}},{"name":"text","data":"所示,根据加入光纤传像束前后系统对比度传递函数(CTF)的下降得出MTF的下降量。可见在引入光纤传像束后系统的对比度传递函数下降在10%以内。"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"2"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704177&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704177&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704177&type=middle"}}}],"id":"gxjmgc-25-12-3137-E2"}}]},{"name":"fig","data":{"id":"Figure10","caption":[{"lang":"zh","label":[{"name":"text","data":"图10"}],"title":[{"name":"text","data":"对比度法测量光纤传像束引起的MTF下降结果"}]},{"lang":"en","label":[{"name":"text","data":"Fig 10"}],"title":[{"name":"text","data":"Decrease of MTF resulted from imaging fiber bundle through contrast methods"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704206&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704206&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704206&type=middle"}]}},{"name":"table","data":{"id":"Table2","caption":[{"lang":"zh","label":[{"name":"text","data":"表2"}],"title":[{"name":"text","data":"对比度法测得的系统对比度传递函数值"}]},{"lang":"en","label":[{"name":"text","data":"Table 2"}],"title":[{"name":"text","data":"Value of MTF of the system contrast through calculate with contrast methods"}]}],"note":[],"table":[{"head":[[{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"Wide of the grids"}]},{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"CTF value of IR detector system"}]},{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"CTF value of system with imaging fiber bundle"}]},{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"Decreases of CTF"}]}]],"body":[[{"align":"center","style":"class:table_top_border2","data":[{"name":"text","data":"5 mm"}]},{"align":"center","style":"class:table_top_border2","data":[{"name":"text","data":"0.867"}]},{"align":"center","style":"class:table_top_border2","data":[{"name":"text","data":"0.846"}]},{"align":"center","style":"class:table_top_border2","data":[{"name":"text","data":"0.021(2.5%)"}]}],[{"align":"center","data":[{"name":"text","data":"3 mm"}]},{"align":"center","data":[{"name":"text","data":"0.714"}]},{"align":"center","data":[{"name":"text","data":"0.692"}]},{"align":"center","data":[{"name":"text","data":"0.022 (3.1%)"}]}],[{"align":"center","style":"class:table_bottom_border","data":[{"name":"text","data":"2 mm"}]},{"align":"center","style":"class:table_bottom_border","data":[{"name":"text","data":"0.55"}]},{"align":"center","style":"class:table_bottom_border","data":[{"name":"text","data":"0.5"}]},{"align":"center","style":"class:table_bottom_border","data":[{"name":"text","data":"0.05(9.1%)"}]}]],"foot":[]}]}},{"name":"p","data":[{"name":"text","data":"其中"},{"name":"italic","data":[{"name":"text","data":"I"}]},{"name":"sub","data":[{"name":"text","data":"max"}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"I"}]},{"name":"sub","data":[{"name":"text","data":"min"}]},{"name":"text","data":"分别是光纤采样灰度的最大值和最小值的均值。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4"}],"title":[{"name":"text","data":"成像实验"}],"level":"1","id":"s4"}},{"name":"p","data":[{"name":"text","data":"为进一步验证所研制光纤传像束的传像性能,利用该光纤传像束进行了成像实验,实验结果如"},{"name":"xref","data":{"text":"图 11","type":"fig","rid":"Figure11","data":[{"name":"text","data":"图 11"}]}},{"name":"text","data":"所示,"},{"name":"xref","data":{"text":"图 11(a)","type":"fig","rid":"Figure11","data":[{"name":"text","data":"图 11(a)"}]}},{"name":"text","data":"为红外目标,放置于"},{"name":"xref","data":{"text":"图 9","type":"fig","rid":"Figure9","data":[{"name":"text","data":"图 9"}]}},{"name":"text","data":"所示装置的可调光阑处;"},{"name":"xref","data":{"text":"图 11(b)","type":"fig","rid":"Figure11","data":[{"name":"text","data":"图 11(b)"}]}},{"name":"text","data":"为用红外探测器直接拍摄的红外目标图像;"},{"name":"xref","data":{"text":"图 11(c)","type":"fig","rid":"Figure11","data":[{"name":"text","data":"图 11(c)"}]}},{"name":"text","data":"、"},{"name":"xref","data":{"text":"(d)","type":"fig","rid":"Figure11","data":[{"name":"text","data":"(d)"}]}},{"name":"text","data":"为通过光纤传像束后拍摄的红外目标图像。对比可见,通过后继耦接镜的缩放,实现单根光纤(50 μm)与单个像元(30 μm)一对一匹配后,系统的空间分辨率将显著提高。通过"},{"name":"xref","data":{"text":"图 11(a)","type":"fig","rid":"Figure11","data":[{"name":"text","data":"图 11(a)"}]}},{"name":"text","data":"中的标称尺度可以看出,改进后系统的空间分辨率可达到2 mm以内,与"},{"name":"xref","data":{"text":"图 10(d)","type":"fig","rid":"Figure10","data":[{"name":"text","data":"图 10(d)"}]}},{"name":"text","data":"结果一致。"},{"name":"xref","data":{"text":"图 11(c)","type":"fig","rid":"Figure11","data":[{"name":"text","data":"图 11(c)"}]}},{"name":"text","data":"与"},{"name":"xref","data":{"text":"图 11(b)","type":"fig","rid":"Figure11","data":[{"name":"text","data":"图 11(b)"}]}},{"name":"text","data":"相比,在竖直方向上存在明显的暗条纹,这是由于光纤传像束中存在暗丝或断丝引起的。在图像处理时,根据各光纤对均匀目标的透过率差异,对图像进行均匀性校正,使像质明显改善(如"},{"name":"xref","data":{"text":"图 11(d)","type":"fig","rid":"Figure11","data":[{"name":"text","data":"图 11(d)"}]}},{"name":"text","data":"所示)。以上实验结果表明,该光纤传像束分辨率高,成像效果良好。"}]},{"name":"fig","data":{"id":"Figure11","caption":[{"lang":"zh","label":[{"name":"text","data":"图11"}],"title":[{"name":"text","data":"光纤传像束的成像实验结果"}]},{"lang":"en","label":[{"name":"text","data":"Fig 11"}],"title":[{"name":"text","data":"Experimental results of imaging fiber bundle"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704224&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704224&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1704224&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"5"}],"title":[{"name":"text","data":"结论"}],"level":"1","id":"s5"}},{"name":"p","data":[{"name":"text","data":"针对我国红外光纤传像束研究起步晚、相关技术比较匮乏的现状,本文对制备的一种硫系玻璃红外光纤传像束,进行了专门的性能测试,并利用该传像束进行了成像实验。测试与实验结果表明:该红外光纤传像束的断丝率约为2.7%,光学效率约为31%,在红外光纤传像系统中引起的MTF下降量低于10%,且能够实现良好的红外成像。所述测试装置及方法尚未见报道,为红外光纤传像束检测及该类系统的研制提供了重要的技术参考。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"b1","label":"1","citation":[{"lang":"en","text":[{"name":"text","data":"HUANG CH H, KINO S, KATAGIRI T, et al.. Remote Fourier transform-infrared spectral imaging system with hollow-optical fiber bundle[J]. Applied Optics, 2012, 51(29):6913-6916."}]}]},{"id":"b2","label":"2","citation":[{"lang":"en","text":[{"name":"text","data":"LU P, BAO X Y, WHIDDEN T, et al.. Application of a mid-infrared fiber bundle in remote measurement of gas concentrations in a chemical vapor deposition chamber[J]. Applied Optics, 2000, 39(7):1112-1117."}]}]},{"id":"b3","label":"3","citation":[{"lang":"zh","text":[{"name":"text","data":"戴世勋, 陈惠广, 李茂忠, 等.硫系玻璃及其在红外光学系统中的应用[J].红外与激光工程, 2012, 41(4):847-852."}]},{"lang":"en","text":[{"name":"text","data":"DAI SH X, CHEN H G, LI M ZH, et al.. Chalcogenide glasses and their infrared optical applications[J]. Infrared and Laser Engineering, 2012, 41(4):847-852. (in Chinese)"}]}]},{"id":"b4","label":"4","citation":[{"lang":"en","text":[{"name":"text","data":"SAITO M, TAKIZAWA M, SAKURAGI S, et al.. Infrared image guide with bundled As-S glass fibers[J]. Applied Optics, 1985, 24(15):2304-2308."}]}]},{"id":"b5","label":"5","citation":[{"lang":"en","text":[{"name":"text","data":"LAVI Y, MILLO A, KATZIR A. Flexible ordered bundles of infrared transmitting silver-halide fibers:Design, fabrication, and optical measurements[J]. Applied Optics, 2006, 45(23):5808-5814."}]}]},{"id":"b6","label":"6","citation":[{"lang":"en","text":[{"name":"text","data":"HILTON R. Chalcogenide Glasses for Infrared Optics[M]. Texas:The McGraw-Hill Companies, 2010:181-210."}]}]},{"id":"b7","label":"7","citation":[{"lang":"zh","text":[{"name":"text","data":"祝清德, 王训四, 聂秋华, 等.红外硫系光纤传像束研究进展[J].硅酸盐通报, 2014, 33(11):2873-2880."}]},{"lang":"en","text":[{"name":"text","data":"ZHU Q D, WANG X S, NIE Q H, et al.. Research progress of infrared chalcogenide optical fiber imaging bundles[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(11):2873-2880. (in Chinese)"}]}]},{"id":"b8","label":"8","citation":[{"lang":"en","text":[{"name":"text","data":"KOBAYASHI T, KATAGIRI T, MATSUURA Y. Multi-element hollow-core anti-resonant fiber for infrared thermal imaging[J]. Optics Express, 2016, 24(23):26565-26574."}]}]},{"id":"b9","label":"9","citation":[{"lang":"en","text":[{"name":"text","data":"TAO G M, EBENDORFF-HEIDEPRIEM H, STOLYAROV A M, et al.. Infrared fibers[J]. Advances in Optics and Photonics, 2015, 7:379-458."}]}]},{"id":"b10","label":"10","citation":[{"lang":"en","text":[{"name":"text","data":"ARTYUSHENKO V, BOCHARNIKOV A, SAKHAROVAT, et al.. Mid-infrared fiber optics for 1-18μm range[J]. Fiber Optics, 2014, 9(4):35-39."}]}]},{"id":"b11","label":"11","citation":[{"lang":"zh","text":[{"name":"text","data":"杨克武, 魏国盛, 吴佩兰. As-S玻璃红外光纤传像束[J].应用光学, 1999, 20(1):32-35."}]},{"lang":"en","text":[{"name":"text","data":"YANG K W, WEI G SH, WU P L. Image bundle of As-S glass infrared fibers[J]. Journal of Applied Optics, 1999, 20(1):32-35. (in Chinese)"}]}]},{"id":"b12","label":"12","citation":[{"lang":"en","text":[{"name":"text","data":"ZHANG B, ZHAI CH CH, QI S SH, et al.. High-resolution chalcogenide fiber bundles for infrared imaging[J]. Optics Letters, 2015, 40(19):4684-4387."}]}]},{"id":"b13","label":"13","citation":[{"lang":"zh","text":[{"name":"text","data":"翟诚诚, 张斌, 祁思胜, 等.柔性硫系玻璃光纤传像束的制备及性能研究[J].光学学报, 2015, 35(8):0806005."}]},{"lang":"en","text":[{"name":"text","data":"ZHAI CH CH, ZHANG B, QI S SH, et al.. Fabrication and properties of flexible chalcognide fiber image bundles[J]. Acta Optica Sinica, 2015, 35(8):0806005. (in Chinese)"}]}]},{"id":"b14","label":"14","citation":[{"lang":"zh","text":[{"name":"text","data":"刘硕, 唐骏州, 刘自军, 等.低损耗硫系玻璃光纤的挤压制备及其性能研究[J].光学学报, 2016, 36(10):1006002."}]},{"lang":"en","text":[{"name":"text","data":"LIU SH, TANG J ZH, LIU Z J, et al.. Fabrication and properties of low-loss chalcogenide optical fiber based on the extrusion method[J]. Acta Optica Sinica, 2016, 36(10):1006002. (in Chinese)"}]}]},{"id":"b15","label":"15","citation":[{"lang":"zh","text":[{"name":"text","data":"赵意意, 杨建峰, 闫兴涛, 等.推扫式红外光纤传像光学系统研究[J].光子学报, 2014, 43(2):0222002."}]},{"lang":"en","text":[{"name":"text","data":"ZHAO Y Y, YANG J F, YAN X T, et al.. Study of push-broom infrared fiber image transmission system[J]. Acta Photonica Sinica, 2014, 43(2):0222002. (in Chinese)"}]}]},{"id":"b16","label":"16","citation":[{"lang":"zh","text":[{"name":"text","data":"谷立山, 陈晓苹.传像光纤束透过率测量方法研究[J].电子测量与仪器学报, 2015, 29(8):1231-1235."}]},{"lang":"en","text":[{"name":"text","data":"GU L SH, CHEN X P. Study on transmittance measurement for image-carrying optical fiber bundle[J]. Journal of Electronic Measurement and Instrumentation, 2015, 29(8):1231-1235. (in Chinese)"}]}]},{"id":"b17","label":"17","citation":[{"lang":"zh","text":[{"name":"text","data":"李航, 颜昌翔, 于平, 等.红外成像系统的调制传递函数测试[J].光学 精密工程, 2016, 24(4):698-708."}]},{"lang":"en","text":[{"name":"text","data":"LI H, YAN CH X, YU P, et al.. Measurement of modulation transfer function for IR imaging system[J]. Opt. Precision Eng., 2016, 24(4):698-708. (in Chinese)"}]}]},{"id":"b18","label":"18","citation":[{"lang":"zh","text":[{"name":"text","data":"李坤宇. 无源光纤传像系统传像质量的评价与优化研究[D]. 南京: 南京理工大学, 2001."},{"name":"uri","data":{"text":[{"name":"text","data":"http://cdmd.cnki.com.cn/Article/CDMD-10288-2003104608.htm"}]}}]},{"lang":"en","text":[{"name":"text","data":"LI K Y. "},{"name":"italic","data":[{"name":"text","data":"Studying of image transmitting quality evaluation and optimization in passive optical fiber image transmission system"}]},{"name":"text","data":"[D]. Nanjing:Nanjing University of Science and Technology, 2001. (in Chinese)"}]}]},{"id":"b19","label":"19","citation":[{"lang":"zh","text":[{"name":"text","data":"王慧, 向阳, 禹秉熙.线列光纤传像束的调制传递函数评价方法及检测[J].光学 精密工程, 2005, 13(2):185-190."}]},{"lang":"en","text":[{"name":"text","data":"WANG H, XIANG Y, YU B X. Comprehensive estimating and measuring method of line-array fiber-optic image bundles based on the modulation transfer function[J]. Opt. Precision Eng., 2005, 13(2):185-190. (in Chinese)"}]}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.3788/OPE.20172512.3137","clc":[[{"name":"text","data":"TN213;TN253"}]],"dc":[],"publisherid":"gxjmgc-25-12-3137","citeme":[],"fundinggroup":[{"lang":"zh","text":[{"name":"text","data":"国家自然科学基金资助项目(No.61505245);中国科学院“西部之光”人才培养计划“西部博士”资助项目(No.Y529591233)"}]}],"history":{"received":"2017-07-13","accepted":"2017-08-23","ppub":"2017-12-25","opub":"2020-06-15"},"copyright":{"data":[{"lang":"zh","data":[{"name":"text","data":"版权所有©《光学 精密工程》编辑部2017"}],"type":"copyright"},{"lang":"en","data":[{"name":"text","data":"Copyright ©2017 Optics and Precision Engineering. All rights reserved."}],"type":"copyright"}],"year":"2017"}},"appendix":[],"type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"光学 精密工程","issue":"12","volume":"25","originalSource":[]}