{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"基于遗传算法的三角网格折叠简化"}]},{"lang":"en","data":[{"name":"text","data":"Collapsing simplification of triangular mesh based on genetic algorithm"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"段","givenname":"黎明","namestyle":"eastern","prefix":""},{"lang":"en","surname":"DUAN","givenname":"Li-ming","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff2","text":"2"}],"role":["corresp","first-author"],"corresp":[{"rid":"cor1","lang":"en","text":"DUAN Li-ming, E-mail: duanliming163@163.com","data":[{"name":"text","data":"DUAN Li-ming, E-mail: duanliming163@163.com"}]}],"bio":[{"lang":"zh","text":["段黎明(1964-), 男, 四川营山人, 教授, 博士生导师。1985年于成都科技大学获得学士学位, 1988年、1998年于重庆大学分别获得硕士、博士学位, 主要从事工业CT技术及应用, 基于工业CT的逆向设计, 网格重建与处理等研究。E-mail:duanliming163@163.com"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"段黎明"}]},{"name":"text","data":"(1964-), 男, 四川营山人, 教授, 博士生导师。1985年于成都科技大学获得学士学位, 1988年、1998年于重庆大学分别获得硕士、博士学位, 主要从事工业CT技术及应用, 基于工业CT的逆向设计, 网格重建与处理等研究。E-mail:"},{"name":"text","data":"duanliming163@163.com"}]]}],"email":"duanliming163@163.com","deceased":false},{"name":[{"lang":"zh","surname":"杨","givenname":"尚朋","namestyle":"eastern","prefix":""},{"lang":"en","surname":"YANG","givenname":"Shang-peng","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff2","text":"2"}],"role":[],"bio":[{"lang":"zh","text":["杨尚朋(1990-), 男, 山东滕州人, 硕士研究生。2013年于山东理工大学取得学士学位, 主要研究方向为三角网格处理, 基于工业CT的逆向工程。E-mail:yangshangpeng163@163.com"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"杨尚朋"}]},{"name":"text","data":"(1990-), 男, 山东滕州人, 硕士研究生。2013年于山东理工大学取得学士学位, 主要研究方向为三角网格处理, 基于工业CT的逆向工程。E-mail:"},{"name":"text","data":"yangshangpeng163@163.com"}]]}],"email":"yangshangpeng163@163.com","deceased":false},{"name":[{"lang":"zh","surname":"张","givenname":"霞","namestyle":"eastern","prefix":""},{"lang":"en","surname":"ZHANG","givenname":"Xia","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff3","text":"3"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"任","givenname":"华桥","namestyle":"eastern","prefix":""},{"lang":"en","surname":"REN","givenname":"Hua-qiao","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff2","text":"2"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"沈","givenname":"宽","namestyle":"eastern","prefix":""},{"lang":"en","surname":"SHEN","givenname":"Kuan","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"1","text":"重庆大学 光电技术及系统教育部重点实验室ICT研究中心, 重庆 400044","data":[{"name":"text","data":"重庆大学 光电技术及系统教育部重点实验室ICT研究中心, 重庆 400044"}]},{"lang":"en","label":"1","text":"The ICT Research Center of the Key Laboratory of Optoelectronic Technology and Systems of Chongqing University, Chongqing 400044, China","data":[{"name":"text","data":"The ICT Research Center of the Key Laboratory of Optoelectronic Technology and Systems of Chongqing University, Chongqing 400044, China"}]}]},{"id":"aff2","intro":[{"lang":"zh","label":"2","text":"重庆大学 机械工程学院, 重庆 400044","data":[{"name":"text","data":"重庆大学 机械工程学院, 重庆 400044"}]},{"lang":"en","label":"2","text":"Mechanical Engineering College, Chongqing University, Chongqing 400044, China","data":[{"name":"text","data":"Mechanical Engineering College, Chongqing University, Chongqing 400044, China"}]}]},{"id":"aff3","intro":[{"lang":"zh","label":"3","text":"中国科学院 重庆绿色智能技术研究院, 重庆 400044","data":[{"name":"text","data":"中国科学院 重庆绿色智能技术研究院, 重庆 400044"}]},{"lang":"en","label":"3","text":"Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400044, China","data":[{"name":"text","data":"Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400044, China"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"针对处理大数据量的三角网格模型会给计算机带来较大压力的问题,本文提出了一种基于遗传算法的三角形折叠简化方法。先求取三角形重心,用重心的三个坐标值与初始化的三个步长进行计算,得到新点坐标,重复多次得到顶点种群,利用遗传算法求取适应度值最小点,修正后得到最优折叠点,最后依照简化误差对三角形排序并根据输入的简化比进行折叠简化。本文方法的适应度函数采用简化误差和三角形规范化系数之商。采用本文方法对花朵和瓶子的三角网格模型进行简化,体积变化率分别为0.010 6%和0.2%,规范化系数分别提高了11.0%和4.56%,优于其他方法。实验结果表明本文方法在有效简化模型的同时,既能保形又能提升三角形的质量。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"To solve the problem that the triangular mesh model which deals with large amount of data will bring great pressure to the computer, a triangle collapsing simplification method based on genetic algorithm was proposed in this paper. In this method, the gravity of the triangles was first derived, the new coordinates were calculated by using the three coordinates of the gravity and the three initialized step lengths, the vertex population was obtained through repeating the above operation several times, the minimum point of fitness value was calculated by using genetic algorithm, the optimal collapsing point was obtained after appropriate amendment, and finally, the sequence of the triangles and collapsing simplification were made according to the simplified error and the proportion of input simplification, respectively. The fitness function adopted in this paper was the quotient of the simplified error and the triangle normalization coefficient. The proposed method was used to achieve the simplification of the triangular mesh model of the flower and the vase, whose volume change rates were 0.0106% and 0.2%, respectively. Besides, their normalized coefficients increased by 11.0% and 4.56%, respectively, which were better than the other methods. The experimental results show that the method proposed can not only simplify the model effectively but also remain its shape as well as improve the quality of the triangular."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"网格简化"}],[{"name":"text","data":"三角形折叠"}],[{"name":"text","data":"遗传算法"}],[{"name":"text","data":"三角形质量"}]]},{"lang":"en","data":[[{"name":"text","data":"mesh simplification"}],[{"name":"text","data":"triangle collapsing"}],[{"name":"text","data":"genetic algorithm"}],[{"name":"text","data":"triangular quality"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"1"}],"title":[{"name":"text","data":"引言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"三角网格模型是一种常用的几何模型数字化表示方法"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",在3D打印制造、有限元分析及娱乐行业等有着广泛的应用"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"2","type":"bibr","rid":"b2","data":[{"name":"text","data":"2"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。数据量庞大的模型会在传输、处理等操作时给计算机带来较大压力"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"3","type":"bibr","rid":"b3","data":[{"name":"text","data":"3"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}}],"rid":["b3","b4"],"text":"3-4","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。因此,有必要在尽可能逼近原始模型的前提下进行简化。"}]},{"name":"p","data":[{"name":"text","data":"网格简化的实质是删除不必要的点和面,用数量更少的新元素重新构造模型"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"5","type":"bibr","rid":"b5","data":[{"name":"text","data":"5"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",从而达到简化的目的。吕书明"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"6","type":"bibr","rid":"b6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"的方法是先边折叠再进行细分,但易丢失细节。Turk"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"7","type":"bibr","rid":"b7","data":[{"name":"text","data":"7"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"以新顶点连接起来的表面逼近原平面,但处理不平坦区域时容易累计误差。袁小翠等"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"8","type":"bibr","rid":"b8","data":[{"name":"text","data":"8"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"结合全局聚类、主成分分析法和自适应均值漂移法对点云进行操作,但精简非封闭曲面会丢失一部分边界信息。Ozaki等人"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"使用二次误差测量方法对模型进行最小区域采样,随后使用数据进行点云聚类,在数据量大时效率高,但不易保存特征。计忠平等"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"10","type":"bibr","rid":"b10","data":[{"name":"text","data":"10"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"为了保持细节特征,用局部体积误差和顶点离散曲率作为折叠代价,效果一般。Keeneth等"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"11","type":"bibr","rid":"b11","data":[{"name":"text","data":"11"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"引入辐射函数因子,但简化效率不高。Pan等"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"12","type":"bibr","rid":"b12","data":[{"name":"text","data":"12"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"引入二次误差测量算法,有效减少了累积误差,但拓扑结构不稳定。周元峰等"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"13","type":"bibr","rid":"b13","data":[{"name":"text","data":"13"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"采用体积平方度量下的简化方法,但对细节特征的保持效果一般。吴志芳等"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"14","type":"bibr","rid":"b14","data":[{"name":"text","data":"14"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"利用投影法预测新顶点,存在不易选取长度阈值和角度阈值,表面连续性较差的问题。易兵等"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"15","type":"bibr","rid":"b15","data":[{"name":"text","data":"15"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"结合二次误差简化算法和张量投票理论,算法较为复杂。"}]},{"name":"p","data":[{"name":"text","data":"针对上述各方法存在误差大、三角形质量低等问题,本文提出了一种基于遗传算法的三角网格三角形折叠简化方法,并通过多组实验的对比和分析,实验结果表明本文方法在有效简化模型的同时,既能保形又能提升三角形的质量。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2"}],"title":[{"name":"text","data":"遗传算法的应用"}],"level":"1","id":"s2"}},{"name":"p","data":[{"name":"text","data":"遗传算法用于寻找最优折叠点,三角形折叠方法则根据折叠点完成模型的简化。两者的结合能找到使折叠后区域体积误差最小、三角形质量最好的点,从而在逼近原模型的前提下,简化模型的同时又能提升三角网格质量。"}]},{"name":"p","data":[{"name":"text","data":"遗传算法模拟遗传信息的演化过程,用适应度函数模仿自然界的淘汰机制,基因经过进化产生优于上一代的新种群,最终得到理想个体"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"16","type":"bibr","rid":"b16","data":[{"name":"text","data":"16"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.1"}],"title":[{"name":"text","data":"基因编码"}],"level":"2","id":"s2-1"}},{"name":"p","data":[{"name":"text","data":"本文方法中基因编码对象是17位的二进制数串。首先随机生成基因(0或1),17位基因组成一条染色体,即一组二进制数串,该数串是交叉、变异的操作对象,通过计算转为十进制数用作步长。初始点的三坐标加上或者减去各随机生成的长度得到新点。不断重复上述操作得到点群。"}]},{"name":"p","data":[{"name":"text","data":"本文设定精度为小数点后6位,即相当于把长度为1的区间分成10"},{"name":"sup","data":[{"name":"text","data":"6"}]},{"name":"text","data":"个子区间。由于2"},{"name":"sup","data":[{"name":"text","data":"16"}]},{"name":"text","data":" "},{"name":"text","data":"<"},{"name":"text","data":" 10 "},{"name":"sup","data":[{"name":"text","data":"6"}]},{"name":"text","data":"+1 "},{"name":"text","data":"<"},{"name":"text","data":" 2 "},{"name":"sup","data":[{"name":"text","data":"17"}]},{"name":"text","data":",因此每个染色体有17位基因。以任一点的"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":"轴方向坐标为例,顶点个体的新坐标产生过程为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"1"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711857&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711857&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711857&type=middle"}}}],"id":"gxjmgc-26-6-1489-E1"}}]},{"name":"p","data":[{"name":"text","data":"其中:"},{"name":"italic","data":[{"name":"text","data":"L"},{"name":"sub","data":[{"name":"text","data":"i"}]}]},{"name":"text","data":"是随机步长对应的十进制数值,"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"是重心的"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":"轴坐标值,"},{"name":"italic","data":[{"name":"text","data":"x"},{"name":"sub","data":[{"name":"text","data":"i"}]}]},{"name":"text","data":"是以步长为移动距离得到的点的"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":"轴坐标值。"},{"name":"italic","data":[{"name":"text","data":"L"},{"name":"sub","data":[{"name":"text","data":"M"}]}]},{"name":"text","data":"是倍率,表示点的各轴坐标值可移动的步长的倍数,预设为1,可根据实际简化效果进行微调,显然,点的各坐标值在轴向可移动的最大距离为"},{"name":"italic","data":[{"name":"text","data":"L"},{"name":"sub","data":[{"name":"text","data":"M"}]}]},{"name":"text","data":"。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.2"}],"title":[{"name":"text","data":"适应度函数"}],"level":"2","id":"s2-2"}},{"name":"p","data":[{"name":"text","data":"适应度函数用于评价个体顶点对理想点的接近程度,为选择操作提供依据。为了平衡网格处理的效率和质量,适应度函数定义为体积误差Δ"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"text","data":"与单个三角形规范化系数"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"的商"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",即:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"2"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711878&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711878&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711878&type=middle"}}}],"id":"gxjmgc-26-6-1489-E2"}}]},{"name":"p","data":[{"name":"text","data":"对本文来说体积误差Δ"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"text","data":"越小越好,单个三角形的规范化系数"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"越大越好,因此适应度函数值越小越符合要求。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.3"}],"title":[{"name":"text","data":"种群进化"}],"level":"2","id":"s2-3"}},{"name":"p","data":[{"name":"text","data":"一次完整的进化包括选择、交叉和变异,群体的每一次进化都会更逼近理想值,从而逐步找到最优解。"}]},{"name":"p","data":[{"name":"text","data":"选择操作的作用是以和适应值成正比的概率遴选个体进入下一代,本文将选择操作转化为最小适应值的选取问题。交叉操作起到了全局搜索的作用,其对象是低适应值顶点的二进制步长的随机某位。本文使用单点交叉法,染色体以设定的交叉概率"},{"name":"italic","data":[{"name":"text","data":"P"},{"name":"sub","data":[{"name":"text","data":"c"}]}]},{"name":"text","data":"进行基因交叉。变异操作会使基因发生随机改变,产生新染色体,其目的是防止寻优过程陷入局部最优解导致过早收敛。本文方法将使染色体以设定的变异概率"},{"name":"italic","data":[{"name":"text","data":"P"},{"name":"sub","data":[{"name":"text","data":"M"}]}]},{"name":"text","data":"进行基因变异。"}]},{"name":"fig","data":{"id":"Figure1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"text","data":"染色体交叉和变异示意图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 1"}],"title":[{"name":"text","data":"Comparison schematic of chiasmatypy and chromosome variation"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711893&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711893&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711893&type=middle"}]}}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3"}],"title":[{"name":"text","data":"简化方法描述"}],"level":"1","id":"s3"}},{"name":"p","data":[{"name":"text","data":"三角形折叠方法是指用一个新顶点代替某一三角形,从而实现三角形向一个点的“折叠”"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"17","type":"bibr","rid":"b17","data":[{"name":"text","data":"17"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。如"},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"所示,灰色、黑色部分分别代表折叠前、后的网格区域。折叠后的三角形"},{"name":"italic","data":[{"name":"text","data":"T"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"被新顶点"},{"name":"italic","data":[{"name":"text","data":"v"}]},{"name":"sub","data":[{"name":"text","data":"new"}]},{"name":"text","data":"所代替,同时删除了三角形"},{"name":"italic","data":[{"name":"text","data":"T"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"~"},{"name":"italic","data":[{"name":"text","data":"T"}]},{"name":"sub","data":[{"name":"text","data":"4"}]},{"name":"text","data":"和顶点"},{"name":"italic","data":[{"name":"text","data":"v"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"~"},{"name":"italic","data":[{"name":"text","data":"v"}]},{"name":"sub","data":[{"name":"text","data":"3"}]},{"name":"text","data":"。"}]},{"name":"fig","data":{"id":"Figure2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"text","data":"三角形折叠示意图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 2"}],"title":[{"name":"text","data":"Schematic of triangle collapsing"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711914&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711914&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711914&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"本文研究对象是由工业CT图像重建生成的STL三角网格模型,目的是获得三角形质量好、模型误差小的简化模型。与某几何元素(顶点或三角形)直接相接的元素(顶点或三角形)被称为一阶邻域几何元素(顶点或三角形),例如"},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"中,"},{"name":"italic","data":[{"name":"text","data":"T"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"~"},{"name":"italic","data":[{"name":"text","data":"T"}]},{"name":"sub","data":[{"name":"text","data":"4"}]},{"name":"text","data":"为顶点"},{"name":"italic","data":[{"name":"text","data":"v"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"的一阶邻域三角形。"}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.1"}],"title":[{"name":"text","data":"确定折叠点"}],"level":"2","id":"s3-1"}},{"name":"p","data":[{"name":"text","data":"计算三角形的重心"},{"name":"italic","data":[{"name":"text","data":"v"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"y"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"z"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":")作为初始折叠点,公式为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"3"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711931&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711931&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711931&type=middle"}}}],"id":"gxjmgc-26-6-1489-E3"}}]},{"name":"p","data":[{"name":"text","data":"用重心的3个坐标值与初始化的3个步长进行计算,得到新点坐标,重复多次得到第一代顶点种群;依次计算种群中顶点个体的适应值并进化多代,选择适应度值最小的点进行下一步的修正。"}]},{"name":"p","data":[{"name":"text","data":"为了进一步保留网格的细节特征,在确定折叠点后需要修正其位置。在网格模型中,由于拉普拉斯坐标包含三维网格模型顶点细节特征,可以调节折叠点位置,将拉普拉斯坐标"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"19","type":"bibr","rid":"b19","data":[{"name":"text","data":"19"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"引入本文方法,以"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":"轴坐标为例:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"4"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711952&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711952&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711952&type=middle"}}}],"id":"gxjmgc-26-6-1489-E4"}}]},{"name":"p","data":[{"name":"italic","data":[{"name":"text","data":"v"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"′("},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"′, "},{"name":"italic","data":[{"name":"text","data":"y"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"′, "},{"name":"italic","data":[{"name":"text","data":"z"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"′)为修正后的最终折叠点,"},{"name":"italic","data":[{"name":"text","data":"v"},{"name":"sub","data":[{"name":"text","data":"F"}]}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"x"},{"name":"sub","data":[{"name":"text","data":"F"}]}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"y"},{"name":"sub","data":[{"name":"text","data":"F"}]}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"z"},{"name":"sub","data":[{"name":"text","data":"F"}]}]},{"name":"text","data":")为经过遗传算法选出的适应度值最小点,"},{"name":"italic","data":[{"name":"text","data":"δ"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"δ"},{"name":"sub","data":[{"name":"text","data":"x"}]}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"δ"},{"name":"sub","data":[{"name":"text","data":"y"}]}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"δ"},{"name":"sub","data":[{"name":"text","data":"z"}]}]},{"name":"text","data":")即为待插入点的拉普拉斯坐标,"},{"name":"italic","data":[{"name":"text","data":"E"},{"name":"sub","data":[{"name":"text","data":"fk"}]}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"i"},{"name":"sub","data":[{"name":"text","data":"xfk"}]}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"i"},{"name":"sub","data":[{"name":"text","data":"yfk"}]}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"i"},{"name":"sub","data":[{"name":"text","data":"zfk"}]}]},{"name":"text","data":")为待折叠三角形"},{"name":"italic","data":[{"name":"text","data":"f"},{"name":"sub","data":[{"name":"text","data":"k"}]}]},{"name":"text","data":"的单位法向量。若"},{"name":"italic","data":[{"name":"text","data":"δ"},{"name":"sub","data":[{"name":"text","data":"x"}]}]},{"name":"text","data":">"},{"name":"text","data":"0,"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"′沿着"},{"name":"italic","data":[{"name":"text","data":"i"},{"name":"sub","data":[{"name":"text","data":"xfk"}]}]},{"name":"text","data":"的正方向移动,若"},{"name":"italic","data":[{"name":"text","data":"δ"},{"name":"sub","data":[{"name":"text","data":"x"}]}]},{"name":"text","data":" "},{"name":"text","data":"<"},{"name":"text","data":" 0, "},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"′则沿着"},{"name":"italic","data":[{"name":"text","data":"i"},{"name":"sub","data":[{"name":"text","data":"xfk"}]}]},{"name":"text","data":"的反方向移动,"},{"name":"italic","data":[{"name":"text","data":"δ"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"δ"},{"name":"sub","data":[{"name":"text","data":"x"}]}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"δ"},{"name":"sub","data":[{"name":"text","data":"y"}]}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"δ"},{"name":"sub","data":[{"name":"text","data":"z"}]}]},{"name":"text","data":")的计算方法如下(以"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":"轴方向为例):"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"5"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711974&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711974&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711974&type=middle"}}}],"id":"gxjmgc-26-6-1489-E5"}}]},{"name":"p","data":[{"name":"text","data":"其中,"},{"name":"italic","data":[{"name":"text","data":"w"},{"name":"sub","data":[{"name":"text","data":"j"}]}]},{"name":"text","data":"为该一阶邻域点的权值,本文取"},{"name":"italic","data":[{"name":"text","data":"w"},{"name":"sub","data":[{"name":"text","data":"j"}]}]},{"name":"text","data":"=1/"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"v"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"′),其中"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"v"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"′)为折叠后"},{"name":"italic","data":[{"name":"text","data":"v"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"′一阶邻域点的个数,"},{"name":"italic","data":[{"name":"text","data":"x"},{"name":"sub","data":[{"name":"text","data":"j"}]}]},{"name":"text","data":"为一阶邻域点的横坐标。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2"}],"title":[{"name":"text","data":"确定折叠顺序"}],"level":"2","id":"s3-2"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2.1"}],"title":[{"name":"text","data":"确定简化误差"}],"level":"3","id":"s3-2-1"}},{"name":"p","data":[{"name":"text","data":"简化误差是确定三角形简化顺序的依据,其设置直接影响简化效果,本文把体积误差作为简化误差,并依据简化误差数值从大到小对三角形进行排列。"}]},{"name":"p","data":[{"name":"text","data":"体积误差是指以"},{"name":"italic","data":[{"name":"text","data":"v"}]},{"name":"sub","data":[{"name":"text","data":"new"}]},{"name":"text","data":"为顶点,以三角形"},{"name":"italic","data":[{"name":"text","data":"T"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"及各一阶邻域三角形为底面的各四面体体积之和"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。以"},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"四面体"},{"name":"italic","data":[{"name":"text","data":"v"}]},{"name":"sub","data":[{"name":"text","data":"new"}]},{"name":"italic","data":[{"name":"text","data":"v"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"italic","data":[{"name":"text","data":"v"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"italic","data":[{"name":"text","data":"v"}]},{"name":"sub","data":[{"name":"text","data":"3"}]},{"name":"text","data":"为例,点"},{"name":"italic","data":[{"name":"text","data":"O"}]},{"name":"text","data":"(0, 0, 0)为原点,Δ"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"text","data":"的计算公式为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"6"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711996&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711996&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1711996&type=middle"}}}],"id":"gxjmgc-26-6-1489-E6"}}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"7"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712018&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712018&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712018&type=middle"}}}],"id":"gxjmgc-26-6-1489-E7"}}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2.2"}],"title":[{"name":"text","data":"确定规范化系数"}],"level":"3","id":"s3-2-2"}},{"name":"p","data":[{"name":"text","data":"三角形规范化是使三角形形状尽可能接近正三角形"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。为了衡量三角形质量,本文引入了规范化系数"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":",网格模型的质量则用平均值"},{"name":"italic","data":[{"name":"overline","data":[{"name":"text","data":"Q"}]}]},{"name":"text","data":"衡量,并将其变化率"},{"name":"italic","data":[{"name":"text","data":"ξ"}]},{"name":"text","data":"作为衡量简化效果的标准,"},{"name":"italic","data":[{"name":"text","data":"ξ"}]},{"name":"text","data":"数值符号为正表示网格质量提高,为负则相反"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。本文方法采用面积边长法"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"计算"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":",单个三角形的规范化系数的计算式为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"8"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712034&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712034&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712034&type=middle"}}}],"id":"gxjmgc-26-6-1489-E8"}}]},{"name":"p","data":[{"name":"text","data":"平均规范化系数的定义为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"9"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712054&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712054&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712054&type=middle"}}}],"id":"gxjmgc-26-6-1489-E9"}}]},{"name":"p","data":[{"name":"text","data":"规范化系数变化率的定义如下:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"10"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712076&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712076&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712076&type=middle"}}}],"id":"gxjmgc-26-6-1489-E10"}}]},{"name":"p","data":[{"name":"text","data":"式中:"},{"name":"italic","data":[{"name":"text","data":"A"}]},{"name":"text","data":"表示三角形面积,"},{"name":"italic","data":[{"name":"text","data":"l"},{"name":"sub","data":[{"name":"text","data":"i"}]}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"i"}]},{"name":"text","data":"=1, 2, 3)表示第"},{"name":"italic","data":[{"name":"text","data":"i"}]},{"name":"text","data":"条边的边长,"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"表示三角形总数,"},{"name":"italic","data":[{"name":"overline","data":[{"name":"text","data":"Q"}]}]},{"name":"text","data":"表示平均三角形质量,"},{"name":"inlineformula","data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712246&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712246&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712246&type=middle"}}}]},{"name":"text","data":"和"},{"name":"inlineformula","data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712264&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712264&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712264&type=middle"}}}]},{"name":"text","data":"分别表示处理前后三角网格模型的平均规范化系数。"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"的取值范围是(0, 1]。若三角形形状接近正三角形,"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"接近1,若为狭长三角形,则"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"接近0。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2.3"}],"title":[{"name":"text","data":"确定体积变化率"}],"level":"3","id":"s3-2-3"}},{"name":"p","data":[{"name":"text","data":"本文采用体积变化率"},{"name":"italic","data":[{"name":"text","data":"ξ"}]},{"name":"sub","data":[{"name":"text","data":"V"}]},{"name":"text","data":"来量化简化前后体积的变化情况,计算公式为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"11"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712097&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712097&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712097&type=middle"}}}],"id":"gxjmgc-26-6-1489-E11"}}]},{"name":"p","data":[{"name":"text","data":"其中"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"分别为简化前后的体积。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2.4"}],"title":[{"name":"text","data":"确定平坦度和平坦度变化率"}],"level":"3","id":"s3-2-4"}},{"name":"p","data":[{"name":"text","data":"三角形平坦度"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"18","type":"bibr","rid":"b18","data":[{"name":"text","data":"18"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"可用于反映网格某点周围区域的平坦程度,计算公式如下:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"12"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712120&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712120&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712120&type=middle"}}}],"id":"gxjmgc-26-6-1489-E12"}}]},{"name":"p","data":[{"name":"text","data":"其中:"},{"name":"italic","data":[{"name":"text","data":"α"},{"name":"sub","data":[{"name":"text","data":"i"}]}]},{"name":"text","data":"为第"},{"name":"italic","data":[{"name":"text","data":"i"}]},{"name":"text","data":"个顶点处的平坦度,"},{"name":"italic","data":[{"name":"text","data":"m"}]},{"name":"text","data":"为该顶点一阶邻域三角形的数目,"},{"name":"italic","data":[{"name":"text","data":"β"},{"name":"sub","data":[{"name":"text","data":"n"}]}]},{"name":"text","data":"为该点的一阶邻域边中第"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"条边所对应的二面角。"}]},{"name":"p","data":[{"name":"text","data":"平坦度变化率可反映处理前后模型表面的变化情况,计算公式如下:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"13"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712138&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712138&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712138&type=middle"}}}],"id":"gxjmgc-26-6-1489-E13"}}]},{"name":"p","data":[{"name":"text","data":"其中:"},{"name":"italic","data":[{"name":"text","data":"ξ"},{"name":"sub","data":[{"name":"text","data":"α"}]}]},{"name":"text","data":"为平坦度变化率,∑"},{"name":"italic","data":[{"name":"text","data":"α"},{"name":"sub","data":[{"name":"text","data":"i"}]}]},{"name":"text","data":", ∑"},{"name":"italic","data":[{"name":"text","data":"α"},{"name":"sub","data":[{"name":"text","data":"i"}]}]},{"name":"text","data":"′分别为网格处理前后所有顶点平坦度之和,"},{"name":"italic","data":[{"name":"text","data":"S"}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"S"}]},{"name":"text","data":"′分别为网格处理前后的顶点数目。若"},{"name":"italic","data":[{"name":"text","data":"ξ"},{"name":"sub","data":[{"name":"text","data":"α"}]}]},{"name":"text","data":">"},{"name":"text","data":"0,说明模型平坦度降低,有可能凸显不平坦区域;若"},{"name":"italic","data":[{"name":"text","data":"ξ"},{"name":"sub","data":[{"name":"text","data":"α"}]}]},{"name":"text","data":" "},{"name":"text","data":"<"},{"name":"text","data":" 0,说明模型表面趋于光滑,有可能丢失特征;若| "},{"name":"italic","data":[{"name":"text","data":"ξ"},{"name":"sub","data":[{"name":"text","data":"α"}]}]},{"name":"text","data":"|→0,说明模型表面在处理前后变化小,符合要求。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2.5"}],"title":[{"name":"text","data":"算法步骤"}],"level":"3","id":"s3-2-5"}},{"name":"p","data":[{"name":"text","data":"本文方法的算法步骤如"},{"name":"xref","data":{"text":"图 3","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure3","caption":[{"lang":"zh","label":[{"name":"text","data":"图3"}],"title":[{"name":"text","data":"本文方法步骤流程图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 3"}],"title":[{"name":"text","data":"Flow chart of procedures of the method proposed in this paper"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712164&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712164&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712164&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"步骤3是为了寻找出最优折叠点。在初始化步长时以初始折叠点"},{"name":"italic","data":[{"name":"text","data":"v"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"y"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"z"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":")为例,随机生成"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":"、"},{"name":"italic","data":[{"name":"text","data":"y"}]},{"name":"text","data":"、"},{"name":"italic","data":[{"name":"text","data":"z"}]},{"name":"text","data":"三轴上的步长"},{"name":"italic","data":[{"name":"text","data":"L"},{"name":"sub","data":[{"name":"text","data":"rxi"}]}]},{"name":"text","data":"、"},{"name":"italic","data":[{"name":"text","data":"L"},{"name":"sub","data":[{"name":"text","data":"ryi"}]}]},{"name":"text","data":"、"},{"name":"italic","data":[{"name":"text","data":"L"},{"name":"sub","data":[{"name":"text","data":"rzi"}]}]},{"name":"text","data":"(正负符号随机),进而生成第一代新点"},{"name":"italic","data":[{"name":"text","data":"v"}]},{"name":"sub","data":[{"name":"text","data":"0"},{"name":"italic","data":[{"name":"text","data":"i"}]}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"+"},{"name":"italic","data":[{"name":"text","data":"L"},{"name":"sub","data":[{"name":"text","data":"rxi"}]}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"y"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"+"},{"name":"italic","data":[{"name":"text","data":"L"},{"name":"sub","data":[{"name":"text","data":"ryi"}]}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"z"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"+"},{"name":"italic","data":[{"name":"text","data":"L"},{"name":"sub","data":[{"name":"text","data":"rzi"}]}]},{"name":"text","data":"),"},{"name":"italic","data":[{"name":"text","data":"i"}]},{"name":"text","data":"=1, 2, 3…50;根据公式(6)和(7)计算简化误差Δ"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"text","data":",根据公式(8)计算新点生成区域的三角形规范化系数"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":",并根据公式(2)以及Δ"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"text","data":"和"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"计算第一代新点的适应度值"},{"name":"italic","data":[{"name":"text","data":"F"}]},{"name":"text","data":"。在使用遗传算法操作选取折叠点的过程中,需要利用适应度函数、选择算子、交叉算子及变异算子不断迭代,达到迭代次数时结束。适应度值"},{"name":"italic","data":[{"name":"text","data":"F"}]},{"name":"text","data":"越小越接近理想折叠点,选出适应度值"},{"name":"italic","data":[{"name":"text","data":"F"}]},{"name":"text","data":"最小的点利用公式(4)和公式(5)修正之后作为最优折叠点。"}]},{"name":"p","data":[{"name":"text","data":"在步骤4中,排序是将各三角形最优折叠点的简化误差、相对应的三角形按照误差由大到小的顺序进行排列,将最优折叠点和对应的三角形存入VC++的容器Vector中。"}]},{"name":"p","data":[{"name":"text","data":"在步骤5中,折叠三角形是指将最小的三角形折叠成点,并更新邻域信息。此外,对新生成的三角形需要重复进行步骤3~4。直到最优折叠点的简化误差和邻域信息存储完毕,进入下一步。"}]},{"name":"p","data":[{"name":"text","data":"在步骤6中,需要计算被简化的三角形数量占总三角形数的百分比,若不满足步骤1设定的简化百分比则重复步骤5,直至满足设定的百分比时结束全过程。"}]}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4"}],"title":[{"name":"text","data":"实验结果与讨论"}],"level":"1","id":"s4"}},{"name":"p","data":[{"name":"text","data":"本文方法在Visual Studio 2013环境下实现,采用OpenGL库并在配置为2.67 GHz Intel Core i7 CPU和内存为4 GB的计算机上对多个三角网格模型进行了实验。"}]},{"name":"p","data":[{"name":"xref","data":{"text":"图 4","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4"}]}},{"name":"text","data":"为人类心脏原模型分别简化了45%和90%的效果图,以网格形式显示的为网格模型,以非网格形式显示的为表面模型。显然,模型经处理后数据量得到了有效精简。"}]},{"name":"fig","data":{"id":"Figure4","caption":[{"lang":"zh","label":[{"name":"text","data":"图4"}],"title":[{"name":"text","data":"人类心脏模型简化效果"}]},{"lang":"en","label":[{"name":"text","data":"Fig 4"}],"title":[{"name":"text","data":"Simplification effect of the human heart model"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712188&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712188&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712188&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"此外,为进一步验证本文方法的有效性,本文进行了对比实验,并对体积变化率、平均三角形质量及其变化率进行了对比和分析。实验选取了花朵模型(数据量大、表面曲率变化大,如"},{"name":"xref","data":{"text":"图 5","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5"}]}},{"name":"text","data":")和瓶子模型(数据量少、表面曲率变化小,如"},{"name":"xref","data":{"text":"图 6","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6"}]}},{"name":"text","data":")作为实验模型。对比实验采用文献["},{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"]方法、文献["},{"name":"xref","data":{"text":"14","type":"bibr","rid":"b14","data":[{"name":"text","data":"14"}]}},{"name":"text","data":"]方法和文献["},{"name":"xref","data":{"text":"15","type":"bibr","rid":"b15","data":[{"name":"text","data":"15"}]}},{"name":"text","data":"]方法作为对比实验方法,并随机选取某些区域展示对比实验效果。"},{"name":"xref","data":{"text":"图 5","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5"}]}},{"name":"text","data":"和"},{"name":"xref","data":{"text":"图 6","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6"}]}},{"name":"text","data":"中,在简化比例相同时,本文方法实验效果与其他三种方法相比,三角形质量最好,狭长三角形数量最少,最符合要求。"}]},{"name":"fig","data":{"id":"Figure5","caption":[{"lang":"zh","label":[{"name":"text","data":"图5"}],"title":[{"name":"text","data":"花朵模型不同方法简化效果对比"}]},{"lang":"en","label":[{"name":"text","data":"Fig 5"}],"title":[{"name":"text","data":"Comparison of simplification effect of the flower models by different methods"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712203&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712203&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712203&type=middle"}]}},{"name":"fig","data":{"id":"Figure6","caption":[{"lang":"zh","label":[{"name":"text","data":"图6"}],"title":[{"name":"text","data":"花瓶模型不同方法简化效果对比"}]},{"lang":"en","label":[{"name":"text","data":"Fig 6"}],"title":[{"name":"text","data":"Comparison of simplification effect of the vase models by different methods"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712222&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712222&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1712222&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"本文将简化前后的模型导入CATIA软件得到相应的体积数据,并根据公式(11)计算得到模型总体的体积变化率"},{"name":"italic","data":[{"name":"text","data":"ξ"},{"name":"sub","data":[{"name":"text","data":"V"}]}]},{"name":"text","data":",对比情况如"},{"name":"xref","data":{"text":"表 1","type":"table","rid":"Table1","data":[{"name":"text","data":"表 1"}]}},{"name":"text","data":"所示。从"},{"name":"xref","data":{"text":"表 1","type":"table","rid":"Table1","data":[{"name":"text","data":"表 1"}]}},{"name":"text","data":"中体积变化率可以看出,本文方法产生的体积变化情况优于其他3种方法,说明经本文方法处理后的模型整体误差小。从"},{"name":"xref","data":{"text":"表 1","type":"table","rid":"Table1","data":[{"name":"text","data":"表 1"}]}},{"name":"text","data":"中可以看到根据计算得到的简化后三角网格模型平均规范化系数及其变化率(在表中括号内),三角网格模型经本文方法处理后,与其他方法相比,三角形质量提升效果稳定、明显。"}]},{"name":"table","data":{"id":"Table1","caption":[{"lang":"zh","label":[{"name":"text","data":"表1"}],"title":[{"name":"text","data":"不同方法的简化效果对比"}]},{"lang":"en","label":[{"name":"text","data":"Table 1"}],"title":[{"name":"text","data":"Comparative analysis of simplification effect by different methods"}]}],"note":[],"table":[{"head":[[{"style":"class:table_top_border","data":[{"name":"text","data":"模型"}]},{"colspan":"5","style":"class:table_top_border","data":[{"name":"text","data":"花朵(108 816个三角形,简化90%)"}]},{"colspan":"5","style":"class:table_top_border","data":[{"name":"text","data":"瓶子(4 236个三角形,简化60%)"}]}],[{"data":[{"name":"text","data":"方法"}]},{"data":[{"name":"text","data":"未处理"}]},{"data":[{"name":"text","data":"本文"}]},{"data":[{"name":"text","data":"文献["},{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"]"}]},{"data":[{"name":"text","data":"文献["},{"name":"xref","data":{"text":"14","type":"bibr","rid":"b14","data":[{"name":"text","data":"14"}]}},{"name":"text","data":"]"}]},{"data":[{"name":"text","data":"文献["},{"name":"xref","data":{"text":"15","type":"bibr","rid":"b15","data":[{"name":"text","data":"15"}]}},{"name":"text","data":"]"}]},{"data":[{"name":"text","data":"未处理"}]},{"data":[{"name":"text","data":"本文"}]},{"data":[{"name":"text","data":"文献["},{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"]"}]},{"data":[{"name":"text","data":"文献["},{"name":"xref","data":{"text":"14","type":"bibr","rid":"b14","data":[{"name":"text","data":"14"}]}},{"name":"text","data":"]"}]},{"data":[{"name":"text","data":"文献["},{"name":"xref","data":{"text":"15","type":"bibr","rid":"b15","data":[{"name":"text","data":"15"}]}},{"name":"text","data":"]"}]}]],"body":[[{"style":"class:table_top_border2","data":[{"name":"italic","data":[{"name":"text","data":"ξ"},{"name":"sub","data":[{"name":"text","data":"V"}]}]}]},{"style":"class:table_top_border2","data":[]},{"style":"class:table_top_border2","data":[{"name":"text","data":"0.010 6%"}]},{"style":"class:table_top_border2","data":[{"name":"text","data":"0.011 5%"}]},{"style":"class:table_top_border2","data":[{"name":"text","data":"0.022 8%"}]},{"style":"class:table_top_border2","data":[{"name":"text","data":"0.011 7%"}]},{"style":"class:table_top_border2","data":[]},{"style":"class:table_top_border2","data":[{"name":"text","data":"0.200%"}]},{"style":"class:table_top_border2","data":[{"name":"text","data":"0.212%"}]},{"style":"class:table_top_border2","data":[{"name":"text","data":"0.415%"}]},{"style":"class:table_top_border2","data":[{"name":"text","data":"0.352%"}]}],[{"data":[{"name":"italic","data":[{"name":"overline","data":[{"name":"text","data":"Q"}]}]}]},{"data":[{"name":"text","data":"0.583"}]},{"data":[{"name":"text","data":"0.647"}]},{"data":[{"name":"text","data":"0.597"}]},{"data":[{"name":"text","data":"0.526"}]},{"data":[{"name":"text","data":"0.498"}]},{"data":[{"name":"text","data":"0.767"}]},{"data":[{"name":"text","data":"0.802"}]},{"data":[{"name":"text","data":"0.768"}]},{"data":[{"name":"text","data":"0.658"}]},{"data":[{"name":"text","data":"0.754"}]}],[{"style":"class:table_bottom_border","data":[{"name":"italic","data":[{"name":"text","data":"ξ"}]}]},{"style":"class:table_bottom_border","data":[]},{"style":"class:table_bottom_border","data":[{"name":"text","data":"+11.0%"}]},{"style":"class:table_bottom_border","data":[{"name":"text","data":"+2.40%"}]},{"style":"class:table_bottom_border","data":[{"name":"text","data":"-9.78%"}]},{"style":"class:table_bottom_border","data":[{"name":"text","data":"-0.146%"}]},{"style":"class:table_bottom_border","data":[]},{"style":"class:table_bottom_border","data":[{"name":"text","data":"+4.56%"}]},{"style":"class:table_bottom_border","data":[{"name":"text","data":"-0.13%"}]},{"style":"class:table_bottom_border","data":[{"name":"text","data":"-14.2%"}]},{"style":"class:table_bottom_border","data":[{"name":"text","data":"-1.96%"}]}]],"foot":[]}]}},{"name":"p","data":[{"name":"text","data":"本文根据公式(12)、公式(13)计算得到模型经各方法处理前后的平坦度变化率,对比情况如"},{"name":"xref","data":{"text":"表 2","type":"table","rid":"Table2","data":[{"name":"text","data":"表 2"}]}},{"name":"text","data":"所示。从"},{"name":"xref","data":{"text":"表 2","type":"table","rid":"Table2","data":[{"name":"text","data":"表 2"}]}},{"name":"text","data":"中可以看出本文方法的平坦度变化率的绝对值最小,即保形效果最好。"}]},{"name":"table","data":{"id":"Table2","caption":[{"lang":"zh","label":[{"name":"text","data":"表2"}],"title":[{"name":"text","data":"不同方法处理后平坦度变化率"}]},{"lang":"en","label":[{"name":"text","data":"Table 2"}],"title":[{"name":"text","data":"Change rate of flatness in different methods"}]}],"note":[],"table":[{"head":[[{"style":"class:table_top_border","data":[{"name":"text","data":"模型"}]},{"style":"class:table_top_border","data":[{"name":"text","data":"本文"}]},{"style":"class:table_top_border","data":[{"name":"text","data":"文献["},{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"]"}]},{"style":"class:table_top_border","data":[{"name":"text","data":"文献["},{"name":"xref","data":{"text":"14","type":"bibr","rid":"b14","data":[{"name":"text","data":"14"}]}},{"name":"text","data":"]"}]},{"style":"class:table_top_border","data":[{"name":"text","data":"文献["},{"name":"xref","data":{"text":"15","type":"bibr","rid":"b15","data":[{"name":"text","data":"15"}]}},{"name":"text","data":"]"}]}]],"body":[[{"style":"class:table_top_border2","data":[{"name":"text","data":"花朵"}]},{"style":"class:table_top_border2","data":[{"name":"text","data":"-0.028 6%"}]},{"style":"class:table_top_border2","data":[{"name":"text","data":"-0.250%"}]},{"style":"class:table_top_border2","data":[{"name":"text","data":"-0.080%"}]},{"style":"class:table_top_border2","data":[{"name":"text","data":"+0.194%"}]}],[{"style":"class:table_bottom_border","data":[{"name":"text","data":"瓶子"}]},{"style":"class:table_bottom_border","data":[{"name":"text","data":"+1.57%"}]},{"style":"class:table_bottom_border","data":[{"name":"text","data":"+2.09%"}]},{"style":"class:table_bottom_border","data":[{"name":"text","data":"+7.30%"}]},{"style":"class:table_bottom_border","data":[{"name":"text","data":"+8.46%"}]}]],"foot":[]}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"5"}],"title":[{"name":"text","data":"结论"}],"level":"1","id":"s5"}},{"name":"p","data":[{"name":"text","data":"本文提出了一种基于遗传算法的三角形折叠简化方法,用遗传算法求取折叠点,随后修正坐标得到最优折叠点,使用三角形折叠的方式进行简化。本文方法以体积误差和规范化系数之商为适应度函数,折叠点又经过了修正,因此能稳定提升三角形质量、减小体积变化。新生成的网格区域综合效果好,即不仅体积变化小,三角形质量分别提升了11%和4.56%,形状尽可能逼近正三角形。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"b1","label":"1","citation":[{"lang":"en","text":[{"name":"text","data":"LIU Y, SAPUTRAA, WANGJ, et al.. Automatic polyhedral mesh generation and scaled boundary finite element analysis of STL models[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 313:106-132."}]}]},{"id":"b2","label":"2","citation":[{"lang":"en","text":[{"name":"text","data":"ZHOU M, WANG M Y. Engineered model simplification for simulation based structural design[J]. Computer-Aided Design and Applications, 2012, 9(1):87-94."}]}]},{"id":"b3","label":"3","citation":[{"lang":"zh","text":[{"name":"text","data":"吴禄慎, 史皓良, 陈华伟.基于特征信息分类的三维点数据去噪[J].光学 精密工程, 2016, 24(06):1465-1473."}]},{"lang":"en","text":[{"name":"text","data":"WU L SH, SHI H L, CHEN H W.Three-dimensional point data denoising based on feature information classification[J]. Opt. Precision Eng., 2016, 24(6):1465-1473. (in Chinese)"}]}]},{"id":"b4","label":"4","citation":[{"lang":"en","text":[{"name":"text","data":"HYUNHO L, MINHO K. Parallel mesh simplification using embedded tree collapsing[J].The Visual Computer, 2016, 32(6-8):967-976."}]}]},{"id":"b5","label":"5","citation":[{"lang":"zh","text":[{"name":"text","data":"张雨禾, 耿国华, 魏潇然.散乱点云谷脊特征提取[J].光学 精密工程, 2015, 23(1):310-318."}]},{"lang":"en","text":[{"name":"text","data":"ZHANG Y H, GENG G H, WEI X R.The feature extraction of scattered point cloud valley ridge[J].Opt. Precision Eng., 2015, 23(1):310-318. (in Chinese)"}]}]},{"id":"b6","label":"6","citation":[{"lang":"zh","text":[{"name":"text","data":"吕书明, 张明磊, 孙树立.基于简化和细分技术的三角形网格拓扑优化方法[J].计算机辅助设计与图形学学报, 2014, 26(08):1225-1231."}]},{"lang":"en","text":[{"name":"text","data":"LU SH M, ZHANG M L, SUN SH L.A triangular grid topology optimization method based on simplified and subdivided technology[J].Journal of computer aided design and graphics, 2014, 26(8):1225-1231.(in Chinese)"}]}]},{"id":"b7","label":"7","citation":[{"lang":"en","text":[{"name":"text","data":"GREG T. Re-tiling polygonal surfaces[J]. ACM SIGGRAPH Computer Graphics, 1992, 26(2):55-64."}]}]},{"id":"b8","label":"8","citation":[{"lang":"zh","text":[{"name":"text","data":"袁小翠, 吴禄慎, 陈华伟.特征保持点云数据精简[J].光学 精密工程, 2015, 23(09):2666-2676."}]},{"lang":"en","text":[{"name":"text","data":"YUAN X C, WU L SH, CHEN H W.Feature keeping point cloud data compact[J].Opt. Precision Eng., 2015, 23(09):2666-2676. (in Chinese)"}]}]},{"id":"b9","label":"9","citation":[{"lang":"en","text":[{"name":"text","data":"OZAKI H, KYOTA F, KANAI T. Out-of-core framework for QEM-based mesh simplification[C]."},{"name":"italic","data":[{"name":"text","data":"Eurographics Symposium on Parallel Graphics"}]},{"name":"text","data":" "},{"name":"text","data":"&"},{"name":"text","data":" "},{"name":"italic","data":[{"name":"text","data":"Visualization"}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"Eurographics Association"}]},{"name":"text","data":", 2015."},{"name":"uri","data":{"text":[{"name":"text","data":"http://dl.acm.org/citation.cfm?id=2853227"}]}}]}]},{"id":"b10","label":"10","citation":[{"lang":"zh","text":[{"name":"text","data":"计忠平, 刘利刚, 王国瑾.基于割角的保特征网格简化算法[J].计算机研究与发展.2006, 43(12):2144-2151."}]},{"lang":"en","text":[{"name":"text","data":"JI ZH P, LIU L G, WANG G J.A simplified algorithm for preserving feature mesh based on cut Angle[J].Journal of Computer Research and Development, 2006, 43(12):2144-2151.(in Chinese)"}]}]},{"id":"b11","label":"11","citation":[{"lang":"en","text":[{"name":"text","data":"KENNETH V, BASILE S, PIERRE K, et al..Simplification of meshes with digitized radiance[J]. The Visual Computer, 2015, 31(6):1011-1021."}]}]},{"id":"b12","label":"12","citation":[{"lang":"en","text":[{"name":"text","data":"ZHIGENG P, KUN Z, JIAOYING S. A new mesh simplification algorithm based on triangle collapses[J]. Journal of Computer Science and Technology, 2001, 16(1):57-63."}]}]},{"id":"b13","label":"13","citation":[{"lang":"zh","text":[{"name":"text","data":"周元峰, 张彩明, 贺平.体积平方度量下的特征保持网格简化方法[J].计算机学报, 2009, 32(2):203-212."}]},{"lang":"en","text":[{"name":"text","data":"ZHOU Y F, ZHANG C M, HE P.A method for maintaining grid simplification under volume squared measurement[J].Chinese Journal of Computers, 2009, 2(2):203-212.(in Chinese)"}]}]},{"id":"b14","label":"14","citation":[{"lang":"zh","text":[{"name":"text","data":"段黎明, 吴志芳, 张霞.利用顶点预测方法实现三维网格的保形简化[J].重庆大学学报, 2012, 35(06):15-20."}]},{"lang":"en","text":[{"name":"text","data":"DUAN L M, WU ZH F, ZAHNG X.The method of vertex prediction is used to simplify the conformal simplification of three-dimensional grid[J].Journal of Chongqing University, 2012, 35(06):15-20.(in Chinese)"}]}]},{"id":"b15","label":"15","citation":[{"lang":"zh","text":[{"name":"text","data":"易兵, 刘振宇, 谭建荣.边界特征保持的网格模型分级二次误差简化算法[J].计算机辅助设计与图形学学报, 2012, 24(4):427-434."}]},{"lang":"en","text":[{"name":"text","data":"YI B, LIU Z Y, TAN J R. New Quadric Metric for Simplifying Meshes to Retain the Feature Edge[J].Journal of Computer-Aided Design & Computer Graphics, 2012, 24(4):427-434.(in Chinese)"}]}]},{"id":"b16","label":"16","citation":[{"lang":"en","text":[{"name":"text","data":"TIACCI L, CARDONI A. A Genetic Algorithm Approach for Collaborative Networked Organizations Partners Selection[C]."},{"name":"italic","data":[{"name":"text","data":"IfipWg"}]},{"name":"text","data":" 55 "},{"name":"italic","data":[{"name":"text","data":"Working Conference on Virtual Enterprises"}]},{"name":"text","data":", 2017, 380: 503-512."},{"name":"uri","data":{"text":[{"name":"text","data":"http://link.springer.com/10.1007/978-3-642-32775-9_51"}]}}]}]},{"id":"b17","label":"17","citation":[{"lang":"en","text":[{"name":"text","data":"DUAN L M, YANG S P, ZHANG G, et al.. A shape-based inter-layer contours correspondence method for ICT-based reverse engineering[J].PlosOne, 2017, 12(5):1-12."}]}]},{"id":"b18","label":"18","citation":[{"lang":"zh","text":[{"name":"text","data":"段黎明, 绍辉, 李中明, 等.高效率的三角网格模型保特征简化方法[J].光学 精密工程, 2017, 25(2):460-468."}]},{"lang":"en","text":[{"name":"text","data":"DUAN L M, SHAO H, LI Z M. Simplification method for feature preserving of efficient triangular mesh model[J].Opt. Precision Eng., 2017, 25(2):460-468. (in Chinese)"}]}]},{"id":"b19","label":"19","citation":[{"lang":"en","text":[{"name":"text","data":"ZHOU K, HUANG J, SNYDEJ R J, et al..Large mesh deformation using the volumetric graph Laplacian[J]. ACM Transactions on Graphics, 2005, 24(3):496-503."}]}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.3788/OPE.20182606.1489","clc":[[{"name":"text","data":"TP751.1"}]],"dc":[],"publisherid":"gxjmgc-26-6-1489","citeme":[],"fundinggroup":[{"lang":"zh","text":[{"name":"text","data":"重庆市自然科学基金资助项目(No.CSTC2016jcyjA0353);国家重大科学仪器设备开发专项资助项目(No.2013YQ030629)"}]}],"history":{"received":"2017-09-01","accepted":"2017-10-30","ppub":"2018-06-25","opub":"2020-06-16"},"copyright":{"data":[{"lang":"zh","data":[{"name":"text","data":"版权所有©《光学 精密工程》编辑部2018"}],"type":"copyright"},{"lang":"en","data":[{"name":"text","data":"Copyright ©2018 Optics and Precision Engineering. All rights reserved."}],"type":"copyright"}],"year":"2018"}},"appendix":[],"type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"光学 精密工程","issue":"6","volume":"26","originalSource":[]}