{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"可穿戴柔性电子的快速制备与医疗应用"}]},{"lang":"en","data":[{"name":"text","data":"Rapid preparation and medical application of wearable flexible electronics"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"张","givenname":"森浩","namestyle":"eastern","prefix":""},{"lang":"en","surname":"ZHANG","givenname":"Sen-hao","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff2","text":"2"}],"role":["first-author"],"bio":[{"lang":"zh","text":["张森浩(1996-),男,山西临汾人,硕士研究生,2017年于苏州大学机电工程学院获得学士学位,主要从事柔性传感器设计、制备与表征方面的研究。E-mail:zsh1996@mail.ustc.edu.cn"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"张森浩"}]},{"name":"text","data":"(1996-),男,山西临汾人,硕士研究生,2017年于苏州大学机电工程学院获得学士学位,主要从事柔性传感器设计、制备与表征方面的研究。E-mail:"},{"name":"text","data":"zsh1996@mail.ustc.edu.cn"}]]}],"email":"zsh1996@mail.ustc.edu.cn","deceased":false},{"name":[{"lang":"zh","surname":"邱","givenname":"东海","namestyle":"eastern","prefix":""},{"lang":"en","surname":"QIU","givenname":"Dong-hai","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":["corresp"],"corresp":[{"rid":"cor1","lang":"en","text":"QIU Dong-hai, E-mail: qiudh@sibet.ac.cn","data":[{"name":"text","data":"QIU Dong-hai, E-mail: qiudh@sibet.ac.cn"}]}],"bio":[{"lang":"zh","text":["邱东海(1988-),男,浙江丽水人,机械工程,2018年于法国国立应用科学院与中国科学院大学获得双博士学位。E-mail:qiudh@sibet.ac.cn"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"邱东海"}]},{"name":"text","data":"(1988-),男,浙江丽水人,机械工程,2018年于法国国立应用科学院与中国科学院大学获得双博士学位。E-mail:"},{"name":"text","data":"qiudh@sibet.ac.cn"}]]}],"email":"qiudh@sibet.ac.cn","deceased":false},{"name":[{"lang":"zh","surname":"衣","givenname":"宁","namestyle":"eastern","prefix":""},{"lang":"en","surname":"YI","givenname":"Ning","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff3","text":"3"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"程","givenname":"寰宇","namestyle":"eastern","prefix":""},{"lang":"en","surname":"CHENG","givenname":"Huan-yu","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff3","text":"3"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"张","givenname":"莹莹","namestyle":"eastern","prefix":""},{"lang":"en","surname":"ZHANG","givenname":"Ying-ying","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"杨","givenname":"洪波","namestyle":"eastern","prefix":""},{"lang":"en","surname":"YANG","givenname":"Hong-bo","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"1","text":"中国科学院 苏州生物医学工程技术研究所,江苏 苏州 215000","data":[{"name":"text","data":"中国科学院 苏州生物医学工程技术研究所,江苏 苏州 215000"}]},{"lang":"en","label":"1","text":"Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215000, China","data":[{"name":"text","data":"Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215000, China"}]}]},{"id":"aff2","intro":[{"lang":"zh","label":"2","text":"中国科学技术大学,安徽 合肥 230000","data":[{"name":"text","data":"中国科学技术大学,安徽 合肥 230000"}]},{"lang":"en","label":"2","text":"University of Science and Technology of China, Hefei 230000, China","data":[{"name":"text","data":"University of Science and Technology of China, Hefei 230000, China"}]}]},{"id":"aff3","intro":[{"lang":"zh","label":"3","text":"宾夕法尼亚州立大学,美国 宾夕法尼亚州 19019","data":[{"name":"text","data":"宾夕法尼亚州立大学,美国 宾夕法尼亚州 19019"}]},{"lang":"en","label":"3","text":"The Pennsylvania State University, Philadelphia 19019, USA","data":[{"name":"text","data":"The Pennsylvania State University, Philadelphia 19019, USA"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"为更好实现可穿戴柔性电子的初期设计和试验验证,提出了一种基于“切割和粘贴”的柔性电子快速制备方法。首先,通过对比光刻工艺与喷墨打印工艺,提出了一种基于激光切割的微纳图案化工艺;接着,利用调节聚二甲基硅氧烷(PDMS)基体的黏附力来控制能量释放率,将带图案的薄膜结构转印到弹性基底;然后,为保证金属电极与柔性基体间紧密贴合,采用PDMS对整体结构进行了封装;最后,搭建了多通道生理信号采集系统,对所加工柔性电极进行电生理测试与医疗探索。实验结果表明:与传统柔性电子加工工艺相比,文章提出的工艺效率较高,成本较低,可在10 min内完成整套工艺,同时制备的电子传感器件可以与皮肤保形接触且输出稳定信号,可为柔性电子的初期设计及后续产业化应用打下基础。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"To realize the initial design and experimental verification of wearable flexible electronics, an electronic rapid preparation method based on \"cutting and pasting\" was proposed. First, a micro-nano patterning process based on laser cutting was presented by a comparison with photolithography and inkjet printing processes. The patterned film structure was then transferred to an elastic substrate by adjusting the adhesion of a polydimethylsiloxane (PDMS) substrate to control the energy release rate. To ensure a close fit between the metal electrode and the flexible substrate, the overall structure was packaged by PDMS. Finally, a multichannel physiological signal acquisition system was built to enable electrophysiological testing and medical exploration. Compared with the traditional flexible electronic processing technology, the proposed method was more efficient and cheaper. In addition, the flexible electronic sensor was in conformal contact with skin and generated a stable signal. This investigation outlines the preliminary foundation and initial design for flexible electronics and their industrial applications."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"可穿戴"}],[{"name":"text","data":"快速转印"}],[{"name":"text","data":"可调黏附力"}],[{"name":"text","data":"柔性电子"}],[{"name":"text","data":"心电图"}]]},{"lang":"en","data":[[{"name":"text","data":"wearable"}],[{"name":"text","data":"rapid transfer printing"}],[{"name":"text","data":"tunable adhesive force"}],[{"name":"text","data":"flexible electronics"}],[{"name":"text","data":"Electrocardiogram(ECG)"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"1"}],"title":[{"name":"text","data":"引言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"柔性电子产品由于具有可弯曲、扭曲、拉伸等性能而受到人们的广泛关注"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。这些独特优异的机械性能被广泛应用于电子纹身"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"2","type":"bibr","rid":"b2","data":[{"name":"text","data":"2"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"及可穿戴设备"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"3","type":"bibr","rid":"b3","data":[{"name":"text","data":"3"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"、柔性压力传感器"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"等领域。制造工艺在柔性电子产品的开发中起着关键作用"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"5","type":"bibr","rid":"b5","data":[{"name":"text","data":"5"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。柔性电子的制造工艺主要包括功能材料(金属纳米粒子)制备、纳米尺度功能薄膜沉积、微纳结构图案化、转印及封装"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"6","type":"bibr","rid":"b6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"7","type":"bibr","rid":"b7","data":[{"name":"text","data":"7"}]}}],"rid":["b6","b7"],"text":"6-7","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"金属膜的微纳图案化是柔性电子制造的核心技术之一。光刻是一种用于获取高精度微纳图案的方法,但是存在诸如对加工环境及原材料要求比较高、工艺复杂、成本高以及与后续工艺兼容性差的问题,极大地限制了可能的工业化生产"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"8","type":"bibr","rid":"b8","data":[{"name":"text","data":"8"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。随着技术的发展,喷墨打印也被广泛应用于微纳图案化工艺,Ahn提出了全方位打印技术,制备出具有伸缩性能的导电电极"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。Sun等提出了近场电纺丝技术(NFES),以一种直接、连续、可控的方法去沉积固态纳米纤维"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"10","type":"bibr","rid":"b10","data":[{"name":"text","data":"10"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。北卡罗莱纳州立大学Jingyan Dong等通过控制AgNW导体的浓度、油墨黏度、印刷速度等参数来实现基于喷墨打印的蛇形电极电生理传感器的快速制备"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"11","type":"bibr","rid":"b11","data":[{"name":"text","data":"11"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。但是喷墨打印工艺也存在诸如定位精度差、墨水配置难、批量化打印效率低等问题,限制了可能的工业化生产"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"6","type":"bibr","rid":"b6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。将激光切割应用于金属膜的图案化,整个过程可以在10 min内完成,无需任何湿法工艺,为可拉伸电子的制造提供了一种操作简单、参数易于调整、效率高、成本低的工艺方法,可以进行工业化应用。"}]},{"name":"p","data":[{"name":"text","data":"将图案化的薄膜结构转移到弹性基底上已经广泛应用于制造可拉伸器件,被认为是实现转印的重要而有序的过程。有效转印取决于供体和受体基板能量释放率的大小,但是在实际操作中控制转印的过程仍然很麻烦"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"12","type":"bibr","rid":"b12","data":[{"name":"text","data":"12"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。通过热失活胶带"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"13","type":"bibr","rid":"b13","data":[{"name":"text","data":"13"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"、水溶失活薄膜"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"14","type":"bibr","rid":"b14","data":[{"name":"text","data":"14"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"等完成薄膜结构转移到弹性基体的方法依赖于训练有素的操作人员和特定的设备,限制了工业化生产的发展。本文通过在聚二甲基硅氧烷(PDMS)中添加不同比例的固化剂来调节PDMS基体对金属薄膜的黏附性,从而控制能量释放率,完成薄膜结构从供体到受体的转印过程。这种工艺操作简单、成本低、快速高效且与卷到卷制造工艺兼容性好,适合于工业化批量生产。"}]},{"name":"p","data":[{"name":"text","data":"最后,为实现金属电极与弹性基体之间的异质整合,使用PDMS对转印后的结构进行封装,可以制备基于电容耦合的可穿戴柔性心电传感器。电容式柔性传感器广泛应用于皮肤本身的生理特征的监测(体温、伤口监测"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"15","type":"bibr","rid":"b15","data":[{"name":"text","data":"15"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"、含水量"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"16","type":"bibr","rid":"b16","data":[{"name":"text","data":"16"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"等)和人体整体生理状态(心电、肌电、脑电"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"17","type":"bibr","rid":"b17","data":[{"name":"text","data":"17"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"等)评估等医疗场景。本文以柔性心电传感器为例,介绍一种可穿戴柔性电子的快速制备方法及其医疗应用。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2"}],"title":[{"name":"text","data":"可穿戴柔性传感器制备方法"}],"level":"1","id":"s2"}},{"name":"p","data":[{"name":"text","data":"如"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"所示,加工工艺如下所述:"}]},{"name":"fig","data":{"id":"Figure1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"text","data":"工艺路线"}]},{"lang":"en","label":[{"name":"text","data":"Fig 1"}],"title":[{"name":"text","data":"Fabrication of flexible sensor"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713905&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713905&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713905&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"(1) 硅片准备"}]},{"name":"p","data":[{"name":"text","data":"准备2片15.24 cm(6英寸)硅片,先后使用异丙醇(IPA)与去离子水(DI water)清洗硅片,用氮气枪吹去异丙醇残留液,随后将硅片在110 ℃条件下加热5 min。"}]},{"name":"p","data":[{"name":"text","data":"(2) 供体/受体基体制备"}]},{"name":"p","data":[{"name":"text","data":"聚二甲基硅氧烷(PDMS)由于具有良好的光学和化学性能、加工简单且价格便宜等优点,已被广泛应用于柔性电子研究领域,故本文选用PDMS作为柔性衬底材料"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"18","type":"bibr","rid":"b18","data":[{"name":"text","data":"18"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"a.聚二甲基硅氧烷(PDMS)溶液制备"}]},{"name":"p","data":[{"name":"text","data":"先后以10:1与20:1的比例混合基体液(Silicone elastomer base)与固化剂(Curing agent)(DOW CORNING SYLGARD 184 SILICONE),静置15 min以去除混合时掺杂的气泡。"}]},{"name":"p","data":[{"name":"text","data":"b.旋涂"}]},{"name":"p","data":[{"name":"text","data":"将10:1的液体PDMS旋涂在硅片A上,旋涂速度为300 r/min,旋涂时间为3 s。随后将硅片放置在100 ℃热盘上加热10 min加速PDMS凝固,形成供体基体。"}]},{"name":"p","data":[{"name":"text","data":"将20:1的液体PDMS旋涂在硅片B上,旋涂速度先后为300 r/min和800 r/min,旋涂时间分别为3 s和5 s。随后将硅片放置在100 ℃热盘上加热10 min加速PDMS凝固,形成受体基体。"}]},{"name":"p","data":[{"name":"text","data":"(3) 金属沉积和薄膜制备"}]},{"name":"p","data":[{"name":"text","data":"通过电子束蒸发(ULVAC,Ei-5z)在聚酰亚胺(PI)膜(MX T.0.008 mm)表面上沉积10 nm的钛和100 nm的金层。将PI膜平铺在供体基体上,PI层朝上,金属层与PDMS接触。"}]},{"name":"p","data":[{"name":"text","data":"(4) 图案化与转印"}]},{"name":"p","data":[{"name":"text","data":"转印过程可以概括为用图章(stamp)通过动力学控制将图案结构从供体衬底按照一定排列规律集成到受体衬底的过程。本文将受体衬底直接作为图章进行转印,可以有效缩减转印步骤,提高转印速率。图案化后的金属-PDMS是依靠范德瓦尔斯力建立起来的界面,这种界面的强度较低,通常使用能量释放率(Energy Release Rate)G来表征界面强度。本文通过控制固化剂的含量来调节供、受基体的能量释放率。提高固化剂的比例(1:20)可以保障金属图案与受体基体的界面强度更强,更不容易发生破坏,从而实现转印过程。图案化与转印过程如下:"}]},{"name":"p","data":[{"name":"text","data":"a.覆盖在供体基体上的金属薄膜被紫外激光切割成蛇形电极组图案,从供体基体上剥去多余部分来完成图案化过程。"}]},{"name":"p","data":[{"name":"text","data":"b.从硅片A上切出含PI-PDMS结构的部分,并将其平铺在受体基体上,PI层朝下,从PI-PDMS结构中剥落供体的PDMS完成转印。"}]},{"name":"p","data":[{"name":"text","data":"(5) 封装"}]},{"name":"p","data":[{"name":"text","data":"a.将20:1的液体PDMS旋涂在含有转印后图案的硅片B上,旋涂速度先后为300 r/min和800 r/min,旋涂时间为3 s和5 s。最终在电极层顶部形成超薄封装层。"}]},{"name":"p","data":[{"name":"text","data":"b.加热受体基体10 min完成封装过程,从硅片B上揭开加工完成的可穿戴柔性心电传感器。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3"}],"title":[{"name":"text","data":"柔性心电传感电极构成及工作原理"}],"level":"1","id":"s3"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.1"}],"title":[{"name":"text","data":"传感器电极构成"}],"level":"2","id":"s3-1"}},{"name":"p","data":[{"name":"text","data":"传感器电极结构如"},{"name":"xref","data":{"text":"图 2(a)","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2(a)"}]}},{"name":"text","data":"所示。柔性心电传感器电极是基于高度可拉伸和导电的蛇形金属结构(如"},{"name":"xref","data":{"text":"图 2(b)","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2(b)"}]}},{"name":"text","data":"所示开发的。制备蛇形电极的薄膜由金、钛电子束蒸镀而成,经激光切割后嵌入在PDMS层中。由于蛇形电极的优异导电性、可拉伸性,以及聚合物基体PDMS的可拉伸性能,柔性心电传感器可以在高应变状态下保持良好导电性。蛇形电极组共含有蛇形电极图案2个,两端电极间距25 mm,用于测量体表电位差用于反映心电等生理电信号。蛇形电极线宽0.25 mm,两个圆形连接点用作将心电信号传感器连接到其他电路元件。由于金属电极完全封装在PDMS基体中,可以与粗糙的皮肤进行寿命更长地保形接触。"}]},{"name":"fig","data":{"id":"Figure2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"text","data":"传感器电极结构图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 2"}],"title":[{"name":"text","data":"Electrode structure of sensor"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713925&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713925&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713925&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2"}],"title":[{"name":"text","data":"传感器工作原理"}],"level":"2","id":"s3-2"}},{"name":"p","data":[{"name":"text","data":"将两个相距很近的等量异号点电荷组成的系统称为电偶极子。心电采集涉及到电偶极子的电场,心电信号在心肌纤维中传播引起心机壁肌肉有规律地收缩,从而产生心脏的跳动,心肌纤维由大量得心肌细胞组成。因此不能用处理点电荷的方式来讨论这种电荷体系的电场,而是将其等效为两个距离很近,等量异号的电荷-"},{"name":"italic","data":[{"name":"text","data":"q"}]},{"name":"text","data":"和+"},{"name":"italic","data":[{"name":"text","data":"q"}]},{"name":"text","data":"。用电偶极距"},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"p"}]}]},{"name":"sub","data":[{"name":"text","data":"e"}]},{"name":"text","data":"="},{"name":"italic","data":[{"name":"text","data":"q"},{"name":"bold","data":[{"name":"text","data":"l"}]}]},{"name":"text","data":"来描述电偶极子的特征,如"},{"name":"xref","data":{"text":"图 3(a)","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3(a)"}]}},{"name":"text","data":"所示建立球极坐标系,设空间上的任意一点"},{"name":"italic","data":[{"name":"text","data":"P"}]},{"name":"text","data":"到+"},{"name":"italic","data":[{"name":"text","data":"q"}]},{"name":"text","data":"、-"},{"name":"italic","data":[{"name":"text","data":"q"}]},{"name":"text","data":"和电偶极子中心的距离分别是"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sup","data":[{"name":"text","data":"+"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sup","data":[{"name":"text","data":"-"}]},{"name":"text","data":"和"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"text","data":",由电势的叠加原理可得在空间上任意一点的电势为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"1"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713941&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713941&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713941&type=middle"}}}],"id":"gxjmgc-27-6-1362-E1"}}]},{"name":"fig","data":{"id":"Figure3","caption":[{"lang":"zh","label":[{"name":"text","data":"图3"}],"title":[{"name":"text","data":"心电信号采集原理"}]},{"lang":"en","label":[{"name":"text","data":"Fig 3"}],"title":[{"name":"text","data":"Acquisition principle of ECG sign"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713954&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713954&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713954&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"其中:"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"text","data":"为任意一点电势,"},{"name":"italic","data":[{"name":"text","data":"q"}]},{"name":"text","data":"为点电荷的电荷量,"},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"为真空介电常数,"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sup","data":[{"name":"text","data":"+"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sup","data":[{"name":"text","data":"-"}]},{"name":"text","data":"和"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"text","data":"分别是任意一点"},{"name":"italic","data":[{"name":"text","data":"P"}]},{"name":"text","data":"到+"},{"name":"italic","data":[{"name":"text","data":"q"}]},{"name":"text","data":",-"},{"name":"italic","data":[{"name":"text","data":"q"}]},{"name":"text","data":"和电偶极子中心的距离。考虑到"},{"name":"italic","data":[{"name":"text","data":"l"}]},{"name":"text","data":" "},{"name":"text","data":"<"},{"name":"text","data":"<"},{"name":"text","data":" "},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"text","data":",则:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"2"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713965&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713965&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713965&type=middle"}}}],"id":"gxjmgc-27-6-1362-E2"}}]},{"name":"p","data":[{"name":"text","data":"其中:"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"text","data":"为"},{"name":"italic","data":[{"name":"text","data":"P"}]},{"name":"text","data":"点到电偶极子中心线与电偶极子连线的夹角。将式(2)代入式(1)得:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"3"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713976&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713976&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713976&type=middle"}}}],"id":"gxjmgc-27-6-1362-E3"}}]},{"name":"p","data":[{"name":"text","data":"其中"},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"p"}]}]},{"name":"sub","data":[{"name":"text","data":"e"}]},{"name":"text","data":"为电偶极距。在球极坐标下,空间中任一点场强都可以用对该点电势求梯度得方式来表示:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"4"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713986&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713986&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713986&type=middle"}}}],"id":"gxjmgc-27-6-1362-E4"}}]},{"name":"p","data":[{"name":"text","data":"其中"},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"e"}]},{"name":"sub","data":[{"name":"text","data":"r"}]}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"e"}]},{"name":"sub","data":[{"name":"text","data":"θ"}]}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"e"}]},{"name":"sub","data":[{"name":"text","data":"φ"}]}]},{"name":"text","data":"分别为电势对于"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"φ"}]},{"name":"text","data":"的单位方向向量。由式(4)可以看出电偶极子电场分布于由"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"text","data":"构成的平面上,以中轴线对称,电偶极子的电场与电矩"},{"name":"italic","data":[{"name":"bold","data":[{"name":"text","data":"p"}]}]},{"name":"sub","data":[{"name":"text","data":"e"}]},{"name":"text","data":"成正比,与场点和电偶极子距离"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sup","data":[{"name":"text","data":"3"}]},{"name":"text","data":"成反比,相比于点电荷随距离衰减得更快。"}]},{"name":"p","data":[{"name":"text","data":"一个完整的心脏点活动包括静息状态、极化、除极、复极等过程,根据电偶极子模型建立相应得心电偶极子等效模型如"},{"name":"xref","data":{"text":"图 3(b)","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3(b)"}]}},{"name":"text","data":"所示"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"19","type":"bibr","rid":"b19","data":[{"name":"text","data":"19"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"如上所述,为了简化分析和研究方便,可将人体看作一个容积导体"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"20","type":"bibr","rid":"b20","data":[{"name":"text","data":"20"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",每个心肌细胞的除极和复极的过程,可以等效为一个电偶极子的活动,心脏细胞的电偶极子在该容积导体的空间中形成一定大小和方向的电场。心肌细胞的电偶极矩随着心脏电活动的传播,其大小和方向都会不断变化,进而引起周围电场的变化,将所有的电偶极子的电场向量相加,形成综合向量,即心电向量。心脏的电活动就可以借此直接反映出来,在体表不同部位就会形成电位差。"}]},{"name":"p","data":[{"name":"text","data":"电容耦合原理被广泛应用在人体生理参数非接触式测量中"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"21","type":"bibr","rid":"b21","data":[{"name":"text","data":"21"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。本文将蛇形电极与人体皮肤被测量部分分别作为耦合电容器的两极板,将两者之间的PDMS作为绝缘介质,容性电极的耦合模型如"},{"name":"xref","data":{"text":"图 3(c)","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3(c)"}]}},{"name":"text","data":"所示,整个模型电容"},{"name":"italic","data":[{"name":"text","data":"C"}]},{"name":"sub","data":[{"name":"text","data":"E"}]},{"name":"text","data":"的表达式为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"5"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713999&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713999&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1713999&type=middle"}}}],"id":"gxjmgc-27-6-1362-E5"}}]},{"name":"p","data":[{"name":"text","data":"其中:"},{"name":"italic","data":[{"name":"text","data":"S"}]},{"name":"text","data":"为蛇形电极与皮肤间有效耦合面积,"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"text","data":"为电极与皮肤之间耦合距离,"},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"text","data":"为蛇形电极与皮肤间耦合介质PDMS的介电常数。"}]},{"name":"p","data":[{"name":"text","data":"如上所述,人体表面可以看作一块能导电的平板,蛇形电极为与皮肤表面类似的平板,两者之间距离很小,中间绝缘层PDMS作为电介质,形成一个电容。心电采集过程中,心电传播到体表,再通过电容的耦合作用传播到蛇形电极。如果在体表不同的两点处放置这样极板A和B。它们与身体间有PDMS等绝缘物隔离,形成两组电容,将A和B耦合到的信号相减就可以得到电容耦合式心电图(Capacitive Coupled Electrocardiogram,CCECG)。"}]},{"name":"p","data":[{"name":"text","data":"当人体皮肤发生变形时,由于柔性基体PDMS的可拉伸性,电极与皮肤之间的耦合距离"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"text","data":"不发生变化,由于蛇形结构优异的机械性能,电极与皮肤之间有效耦合面积"},{"name":"italic","data":[{"name":"text","data":"S"}]},{"name":"text","data":"也不发生变化。因此模型在人体皮肤发生形变时,电容"},{"name":"italic","data":[{"name":"text","data":"C"}]},{"name":"sub","data":[{"name":"text","data":"E"}]},{"name":"text","data":"保持不变,极大地保证了皮肤变形时心电信号的稳定。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4"}],"title":[{"name":"text","data":"试验与结果"}],"level":"1","id":"s4"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.1"}],"title":[{"name":"text","data":"试验"}],"level":"2","id":"s4-1"}},{"name":"p","data":[{"name":"text","data":"该试验利用传统心电电极与柔性传感电极同时对一位受试者进行心电信号采集并进行心电信号对比分析,该试验在PowerLab生物信号采集分析系统中完成。"}]},{"name":"p","data":[{"name":"text","data":"PowerLab系统对生物电信号(心电、肌电、脑电等)与非生物电信号(血压、呼吸等)进行采集,然后对采集到的信号进行加工处理。PowerLab系统包括硬件和软件两部分,硬件部分包括电极、生物电信号放大器及数据采集系统主机等。本实验采用的是16通道PowerLab主机,系统的每一通道都有独立可调的抗干扰低通滤波器,且系统最高采样频率可以达到400 kHz的连续记录,数模转换器为16位分辨率。生物放大器是一个基本的信号调节单元,放大并调节信号以供基于MATLAB的生物信号数据采集和实时分析。"}]},{"name":"p","data":[{"name":"text","data":"本试验使用的PowerLab数据采集分析系统由PowerLab分析主机、生物放大器、电脑组成,PowerLab主机与生物放大器相连,主机采集的数据通过Type-B转Type-A串口线连接电脑。"}]},{"name":"p","data":[{"name":"text","data":"试验系统组成"},{"name":"xref","data":{"text":"图 4(a)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(a)"}]}},{"name":"text","data":"所示,首先将原始的心电信号进行放大、滤波等处理,然后将处理过的信号转换成数字信号,并将数字信号通过USB通信协议传输到计算机内部,计算机通过Labchart软件接收设备传入的数字信号,实时对采集的信号进行处理。具体工作过程如下:"}]},{"name":"fig","data":{"id":"Figure4","caption":[{"lang":"zh","label":[{"name":"text","data":"图4"}],"title":[{"name":"text","data":"试验装置"}]},{"lang":"en","label":[{"name":"text","data":"Fig 4"}],"title":[{"name":"text","data":"Test device"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714010&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714010&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714010&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"(1) 信号采集。实验人员在受试人胸口处通过柔性传感电极与传统心电电极采集到的心电信号直接通过导线接入PowerLab的多通道生物电端口。"}]},{"name":"p","data":[{"name":"text","data":"(2) 信号放大及AD转换。在生物放大器中,采集到的电信号经过不同类型的放大、滤波(高通滤波、低通滤波、带通滤波)等处理,由于放大器单独与其他模块独立屏蔽,可以避免来自其他模块的信号干扰,然后对处理后的信号通过AD转换模块进行数字化,之后就可以通过USB传输线将数字信号传送到计算机内部。"}]},{"name":"p","data":[{"name":"text","data":"(3) 显示波形和分析处理。在Labchart软件上,显示采集到的数据波形、对信号进行测量、分析、处理等。由于心电信号属于微弱的低频信号,信号幅值一般只有0.05~4 mV,频率范围较低,主要集中在5~20 Hz,由于测量时必然与外界接触,故干扰噪声非常容易影响测量,因此本文决定采用Labchart软件中软件滤波(低通滤波)去除肌电等信号并去除50 Hz工频干扰,采样频率设置为1 000 Hz,设置为自动量程。将柔性电极及传统心电电极如"},{"name":"xref","data":{"text":"图 4(b)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(b)"}]}},{"name":"text","data":"所示与受试人相连,同步开始记录心电变化情况,处理数据得到"},{"name":"xref","data":{"text":"图 5(d)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5(d)"}]}},{"name":"text","data":"。利用柔性传感电极与传统电极分别采集生物机体电信号,经PowerLab多通道生理参数采集系统后将数字信号传输给PC端,通过Labchart显示"},{"name":"xref","data":{"text":"图 4(b)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(b)"}]}},{"name":"text","data":"和"},{"name":"xref","data":{"text":"图 4(c)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(c)"}]}},{"name":"text","data":"。"}]},{"name":"fig","data":{"id":"Figure5","caption":[{"lang":"zh","label":[{"name":"text","data":"图5"}],"title":[{"name":"text","data":"试验结果与分析"}]},{"lang":"en","label":[{"name":"text","data":"Fig 5"}],"title":[{"name":"text","data":"Experimental results and analysis"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714022&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714022&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714022&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.2"}],"title":[{"name":"text","data":"结果与讨论"}],"level":"2","id":"s4-2"}},{"name":"p","data":[{"name":"text","data":"激光切割是通过激光产生的瞬时高温对加工薄膜进行灼烧,使其形成图案的加工工艺。其中关键的是对激光扫掠速度等参数的调整。在激光切割参数调试过程中,由于激光在图形弯曲处扫掠速度过快、整幅次数少,使得切割图案出现毛刺现象,但扫掠速度过慢、整幅次数多又会使得灼烧温度过高,图案灼烧斑块增大,分辨率下降,不利于PI-金属薄膜的图案化。经过反复地参数调整后发现,当扫掠速度为2 000 mm/s,整幅次数为8次时,如"},{"name":"xref","data":{"text":"图 5(a)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5(a)"}]}},{"name":"text","data":"所示,形成的蛇形网络结构未发生毛刺现象同时分辨率可以达到10 "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"m。"}]},{"name":"p","data":[{"name":"text","data":"金属电极本身并不具备延展性,将其加工成为蛇形结构金属电极后,便具备了一定的拉伸能力,而柔性基体PDMS本身具有良好的拉伸性能,将蛇形电极通过上述工艺嵌入PDMS中,形成了蛇形金属-PDMS弹性导体。为了进一步研究柔性心电电极的拉伸及电学性能,首先通过第2节描述的工艺流程制备如"},{"name":"xref","data":{"text":"图 5(b)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5(b)"}]}},{"name":"text","data":"所示的可拉伸柔性心电传感电极。从"},{"name":"xref","data":{"text":"图 5(b)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5(b)"}]}},{"name":"text","data":"和"},{"name":"xref","data":{"text":"5(c)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"5(c)"}]}},{"name":"text","data":"可以看出,制备得到的柔性心电电极具有非常好的柔性特性,可以实现小范围的拉伸变形,金属蛇形电极会随着拉伸延展,但总体体积与表面积不发生变化,因此金属电阻不发生变化。"}]},{"name":"p","data":[{"name":"text","data":"分析"},{"name":"xref","data":{"text":"图 5(d)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5(d)"}]}},{"name":"text","data":"中的数据可以看出,传感器的电压会随着心电的变化呈现出相应变化,传感器通过电容耦合得到相应的电压响应,产生相应同步的波形,CCECG的R波数目与ECG的R波数目相同。对比两个曲线发现,在静止时,传统心电电极受到呼吸噪声与肌电噪声影响明显,波形出现高频的细小波纹,而柔性心电电极则相对平滑,受上述噪声影响小。在运动时传统心电电极与体表发生相对位移,形成运动噪声波形,使得心电波形失真。而柔性传感器电极采集的心电波形则无明显变化,主要是因为柔性基体通过范德瓦尔斯力与皮肤进行保形接触,在呼吸及其他运动的影响下也可以保障与皮肤不产生相对位移。因此该传感器可以被广泛地应用于医疗行业,用于贴在人体胸口处或者其他身体部位,能够实时监测体温、心电、肌电等人体健康生理指标,对人体健康数据变化给予及时反馈,甚至可以实现某些疾病的前期预防与诊断。"}]},{"name":"p","data":[{"name":"xref","data":{"text":"图 5(b)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5(b)"}]}},{"name":"text","data":"蛇形电极完全被封在PDMS中,形成具有可拉伸效果的柔性传感器。"},{"name":"xref","data":{"text":"图 5(d)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5(d)"}]}},{"name":"text","data":"可以发现在静止时,传统心电电极与柔性心电电极采集到的波形几乎相同,但传统心电电极采集到的波形噪声较大,而运动时,传统心电采集到的波形受噪声干扰明显。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"5"}],"title":[{"name":"text","data":"结论"}],"level":"1","id":"s5"}},{"name":"p","data":[{"name":"text","data":"为更好实现可穿戴柔性电子的初期设计和试验验证,本文提出了一种基于“切割和粘贴”的柔性电子快速制备方法。首先,通过对比光刻工艺与喷墨打印工艺,提出了一种基于激光切割的微纳图案化工艺。接着,利用调节聚二甲基硅氧烷(PDMS)基体的黏附力来控制能量释放率,将带图案的薄膜结构转印到弹性基底。然后,为保证金属电极与柔性基体间紧密贴合,采用PDMS对整体结构进行了封装。最后,搭建了多通道生理信号采集系统,对所加工柔性电极进行了电生理测试与医疗探索。实验结果表明,与传统柔性电子加工工艺相比,文章提出的工艺效率较高,成本较低,同时制备电子传感器件可以与皮肤保形接触且输出稳定信号。为多生理参数传感器(温度、皮肤含水量、心电、脑电、肌电等)的设计及后续医疗场景的应用(伤口愈合监测、柔性织物传感器、胎动监测等)打下了基础。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"b1","label":"1","citation":[{"lang":"en","text":[{"name":"text","data":"ROGERS J A, SOMEYA T. Materials and mechanics for stretchable electronics[J]."},{"name":"italic","data":[{"name":"text","data":"Science"}]},{"name":"text","data":", 2010, 327(5973):1603-1607."}]}]},{"id":"b2","label":"2","citation":[{"lang":"en","text":[{"name":"text","data":"KIM D H, LU N, MA R, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Epidermal electronics[J]."},{"name":"italic","data":[{"name":"text","data":"World Neurosurgery"}]},{"name":"text","data":", 2011, 76(6):485."}]}]},{"id":"b3","label":"3","citation":[{"lang":"zh","text":[{"name":"text","data":"夏凯伦, 蹇木强, 张莹莹.纳米碳材料在可穿戴柔性导电材料中的应用研究进展[J].物理化学学报, 2016, 32(10):2427-2446."}]},{"lang":"en","text":[{"name":"text","data":"XIA K L, JIAN M Q, ZHANG Y Y. Research progress in application of nano carbon materials in wearable flexible conductive materials[J]."},{"name":"italic","data":[{"name":"text","data":"Acta Physico-Chimica Sinica."}]},{"name":"text","data":" 2016, 32(10):2427-2446.(in Chinese)"}]}]},{"id":"b4","label":"4","citation":[{"lang":"en","text":[{"name":"text","data":"ZANG Y, ZHANG F, DI C A, "},{"name":"italic","data":[{"name":"text","data":"et al.."}]},{"name":"text","data":" Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]."},{"name":"italic","data":[{"name":"text","data":"Mater. Horiz"}]},{"name":"text","data":". 2015, 2(2):140-156."}]}]},{"id":"b5","label":"5","citation":[{"lang":"en","text":[{"name":"text","data":"PENG P, WU K, LV L, "},{"name":"italic","data":[{"name":"text","data":"et al.."}]},{"name":"text","data":" One-step selective adhesive transfer printing for scalable fabrication of stretchable electronics[J]."},{"name":"italic","data":[{"name":"text","data":"Advanced Materials Technologies"}]},{"name":"text","data":", 2018:1700264."}]}]},{"id":"b6","label":"6","citation":[{"lang":"zh","text":[{"name":"text","data":"尹周平, 黄永安.柔性电子制造:材料、器件与工艺[M].北京:科学出版社, 2016."}]},{"lang":"en","text":[{"name":"text","data":"YIN ZH P, HUANG Y A."},{"name":"italic","data":[{"name":"text","data":"Flexible Electronics Manufacturing: Materials, Devices and Processes"}]},{"name":"text","data":"[M]. Beijing:Science Press, 2016. (in Chinese)"}]}]},{"id":"b7","label":"7","citation":[{"lang":"en","text":[{"name":"text","data":"YANG D, MOSADEGH B, AINLA A, "},{"name":"italic","data":[{"name":"text","data":"et al.."}]},{"name":"text","data":" Actuators: buckling of elastomeric beams enables actuation of soft machines (Adv. Mater. 41/2015)[J]."},{"name":"italic","data":[{"name":"text","data":"Advanced Materials,"}]},{"name":"text","data":" 2015, 27(41):6305-6305."}]}]},{"id":"b8","label":"8","citation":[{"lang":"zh","text":[{"name":"text","data":"王国彪.纳米制造前沿综述[M].北京:科学出版社, 2009."}]},{"lang":"en","text":[{"name":"text","data":"WANG G B."},{"name":"italic","data":[{"name":"text","data":"Review of the Frontiers of Nanofabrication"}]},{"name":"text","data":"[M]. Beijing:Science Press, 2019. (in Chinese)"}]}]},{"id":"b9","label":"9","citation":[{"lang":"en","text":[{"name":"text","data":"AHN B Y, DUOSS E B, MOTALA M J, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes[J]."},{"name":"italic","data":[{"name":"text","data":"Science,"}]},{"name":"text","data":" 2009, 323(5921):1590-1593."}]}]},{"id":"b10","label":"10","citation":[{"lang":"en","text":[{"name":"text","data":"SUN DH, CHANG C, LI, "},{"name":"italic","data":[{"name":"text","data":"et al.."}]},{"name":"text","data":" Near-field electrospinning[J]."},{"name":"italic","data":[{"name":"text","data":"Nano Letters,"}]},{"name":"text","data":" 2006, 6(4):839."}]}]},{"id":"b11","label":"11","citation":[{"lang":"en","text":[{"name":"text","data":"CUI Z, HAN Y, HUANG Q,"},{"name":"italic","data":[{"name":"text","data":"et al."}]},{"name":"text","data":". Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics[J]."},{"name":"italic","data":[{"name":"text","data":"Nanoscale,"}]},{"name":"text","data":" 2018:10.1039."}]}]},{"id":"b12","label":"12","citation":[{"lang":"en","text":[{"name":"text","data":"CARLSON A, BOWEN A M, HUANG Y, "},{"name":"italic","data":[{"name":"text","data":"et al."}]},{"name":"text","data":". Transfer printing techniques for materials assembly and micro/nanodevice fabrication[J]."},{"name":"italic","data":[{"name":"text","data":"Advanced materials (Deerfield Beach, Fla.)"}]},{"name":"text","data":", 2012, 24(39):5284-5318."}]}]},{"id":"b13","label":"13","citation":[{"lang":"en","text":[{"name":"text","data":"YAN Z, PAN T, XUE M, "},{"name":"italic","data":[{"name":"text","data":"et al.."}]},{"name":"text","data":" Thermal release transfer printing for stretchable conformal bioelectronics[J]."},{"name":"italic","data":[{"name":"text","data":"Advanced Science"}]},{"name":"text","data":", 2017, 4(11):1700251."}]}]},{"id":"b14","label":"14","citation":[{"lang":"en","text":[{"name":"text","data":"JEONG J W, KIM M K, CHENG H, "},{"name":"italic","data":[{"name":"text","data":"et al.."}]},{"name":"text","data":" Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements[J]."},{"name":"italic","data":[{"name":"text","data":"Advanced Healthcare Materials,"}]},{"name":"text","data":" 2014, 3(5):642-648."}]}]},{"id":"b15","label":"15","citation":[{"lang":"en","text":[{"name":"text","data":"WEBB R C, BONIFAS A P, BEHNAZ A, "},{"name":"italic","data":[{"name":"text","data":"et al."}]},{"name":"text","data":". Ultrathin conformal devices for precise and continuous thermal characterization of human skin[J]."},{"name":"italic","data":[{"name":"text","data":"Nature Materials,"}]},{"name":"text","data":" 2013, 12(10):938-944."}]}]},{"id":"b16","label":"16","citation":[{"lang":"en","text":[{"name":"text","data":"CHENG H, ZHANG Y, XIAN H, "},{"name":"italic","data":[{"name":"text","data":"et al.."}]},{"name":"text","data":" Analysis of a concentric coplanar capacitor for epidermal hydration sensing[J]."},{"name":"italic","data":[{"name":"text","data":"Sensors & Actuators A Physical"}]},{"name":"text","data":", 2013, 203(6):149-153."}]}]},{"id":"b17","label":"17","citation":[{"lang":"zh","text":[{"name":"text","data":"孟莹.基于柔性MEMS干电极阵列的智能心电监护系统关键技术研究[D].上海: 上海交通大学, 2015."}]},{"lang":"en","text":[{"name":"text","data":"MENG Y."},{"name":"italic","data":[{"name":"text","data":"Research on Key Technology of Intelligent ECG Monitoring System Based on Flexible MEMS Dry Electrode Array"}]},{"name":"text","data":" [D]. Shanghai: Shanghai Jiao Tong University, 2015. (in Chinese)"}]}]},{"id":"b18","label":"18","citation":[{"lang":"en","text":[{"name":"text","data":"SHIN Y S, CHO K, LIM S H, "},{"name":"italic","data":[{"name":"text","data":"et al."}]},{"name":"text","data":". PDMS-based micro PCR chip with Parylene coating[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Micromechanics & Microengineering"}]},{"name":"text","data":", 2003, 13(5):768-774."}]}]},{"id":"b19","label":"19","citation":[{"lang":"zh","text":[{"name":"text","data":"段鹤.电偶极子模型及其应用[J].齐齐哈尔大学学报:自然科学版, 2011(2):40-43."}]},{"lang":"en","text":[{"name":"text","data":"DUAN H. Model and application of electric dipole[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Qiqihar University:Natural Science Edition,"}]},{"name":"text","data":" 2011(2):40-43. (in Chinese)"}]}]},{"id":"b20","label":"20","citation":[{"lang":"zh","text":[{"name":"text","data":"王平, 刘清君.生物医学传感与检测[M].杭州:浙江大学出版社, 2011."}]},{"lang":"en","text":[{"name":"text","data":"WANG P, LIU Q J. "},{"name":"italic","data":[{"name":"text","data":"Biomedical Sensing and Detection"}]},{"name":"text","data":" [M]. Hangzhou: Zhejiang University press, 2011. (in Chinese)"}]}]},{"id":"b21","label":"21","citation":[{"lang":"zh","text":[{"name":"text","data":"杨斌, 董永贵.电容耦合非接触电极及心电信号获取[J].仪器仪表学报, 2015, 36(5):1072-1078."}]},{"lang":"en","text":[{"name":"text","data":"YANG B, DONG Y G.Capacitively coupled non-contact electrode and ECG signal acquisition[J]."},{"name":"italic","data":[{"name":"text","data":"Chinese Journal of Scientific Instrument,"}]},{"name":"text","data":" 2015, 36(5):1072-1078. (in Chinese)"}]}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.3788/OPE.20192706.1362","clc":[[{"name":"text","data":"TP368.33"}]],"dc":[],"publisherid":"gxjmgc-27-6-1362","citeme":[],"fundinggroup":[{"lang":"zh","text":[{"name":"text","data":"江苏省科技计划重点项目资助(No.BE2016010-4);吉林省与中国科学院科技合作高新技术产业化专项资金资助项目(No.2018SYHZ0022);苏州市科技计划重点产业技术创新前瞻性应用研究项目资助(No.SYG201824)"}]}],"history":{"received":"2018-12-24","accepted":"2019-01-23","ppub":"2019-06-15","opub":"2020-06-16"},"copyright":{"data":[{"lang":"zh","data":[{"name":"text","data":"版权所有©《光学 精密工程》编辑部2019"}],"type":"copyright"},{"lang":"en","data":[{"name":"text","data":"Copyright ©2019 Optics and Precision Engineering. All rights reserved."}],"type":"copyright"}],"year":"2019"}},"appendix":[],"type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"光学 精密工程","issue":"6","volume":"27","originalSource":[]}