{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"复杂图案轮廓曝光版图的生成及工艺实现"}]},{"lang":"en","data":[{"name":"text","data":"Realization of complex patterns via \"sketch and peel\" lithography"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"段","givenname":"辉高","namestyle":"eastern","prefix":""},{"lang":"en","surname":"DUAN","givenname":"Hui-gao","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":["corresp","first-author"],"corresp":[{"rid":"cor1","lang":"en","text":"DUAN Hui-gao, E-mail: duanhg@hnu.edu.cn","data":[{"name":"text","data":"DUAN Hui-gao, E-mail: duanhg@hnu.edu.cn"}]}],"bio":[{"lang":"zh","text":["段辉高(1982-),男,湖南衡阳人,教授,博士生导师,2004年、2010年于兰州大学分别获得学士、博士学位,主要从事微纳制造、微纳光学器件的精密和超精密加工等方面的研究。E-mail:duanhg@hnu.edu.cn"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"段辉高"}]},{"name":"text","data":"(1982-),男,湖南衡阳人,教授,博士生导师,2004年、2010年于兰州大学分别获得学士、博士学位,主要从事微纳制造、微纳光学器件的精密和超精密加工等方面的研究。E-mail:"},{"name":"text","data":"duanhg@hnu.edu.cn"}]]}],"email":"duanhg@hnu.edu.cn","deceased":false},{"name":[{"lang":"zh","surname":"戴","givenname":"彭","namestyle":"eastern","prefix":""},{"lang":"en","surname":"DAI","givenname":"Peng","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff2","text":"2"}],"role":[],"bio":[{"lang":"zh","text":["戴彭(1992-),男,湖南岳阳人,硕士研究生,2015年于湘潭大学获得学士学位,主要从事微纳光学方面的研究。E-mail: pengdai@hnu.edu.cn"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"戴彭"}]},{"name":"text","data":"(1992-),男,湖南岳阳人,硕士研究生,2015年于湘潭大学获得学士学位,主要从事微纳光学方面的研究。E-mail: "},{"name":"text","data":"pengdai@hnu.edu.cn"}]]}],"email":"pengdai@hnu.edu.cn","deceased":false},{"name":[{"lang":"zh","surname":"张","givenname":"轼","namestyle":"eastern","prefix":""},{"lang":"en","surname":"ZHANG","givenname":"Shi","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"陈","givenname":"艺勤","namestyle":"eastern","prefix":""},{"lang":"en","surname":"CHEN","givenname":"Yi-qin","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"石","givenname":"惠民","namestyle":"eastern","prefix":""},{"lang":"en","surname":"SHI","givenname":"Hui-min","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff2","text":"2"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"林","givenname":"子豪","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LIN","givenname":"Zi-hao","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff2","text":"2"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"周","givenname":"艳明","namestyle":"eastern","prefix":""},{"lang":"en","surname":"ZHOU","givenname":"Yan-ming","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff2","text":"2"}],"role":[],"deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"1","text":"湖南大学 机械与运载工程学院,湖南 长沙 410082","data":[{"name":"text","data":"湖南大学 机械与运载工程学院,湖南 长沙 410082"}]},{"lang":"en","label":"1","text":"College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China","data":[{"name":"text","data":"College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China"}]}]},{"id":"aff2","intro":[{"lang":"zh","label":"2","text":"湖南大学 物理与微电子科学学院,湖南 长沙 410082","data":[{"name":"text","data":"湖南大学 物理与微电子科学学院,湖南 长沙 410082"}]},{"lang":"en","label":"2","text":"School of Physics and Electronics, Hunan University, Changsha 410082, China","data":[{"name":"text","data":"School of Physics and Electronics, Hunan University, Changsha 410082, China"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"轮廓曝光技术可大幅提高跨尺度结构电子束直写的加工效率,但对于复杂图案,前期人工绘制曝光版图的过程费时费力。为了进一步提高版图生成效率,本文提出一种利用边界追踪算法提取数字图像轮廓并将它转换为曝光版图的方法。首先,通过图像灰度化以及Otsu自适应阈值分割法将图像转换为二值图像。接着,使用MATLAB bwboundaries边界追踪函数追踪二值图像边界。最后,利用GDS工具箱将图像边界转换为曝光版图。实验结果表明,本工作提出的方法可以有效地提取树叶、数字及动物等复杂图案边缘并将它们转换为版图进行后续曝光。通过制备“枫叶”图形证实利用本文方法生成的版图在轮廓曝光中可获得从纳米尺度到亚毫米尺度下的跨尺度、高保真度图形,通过制备50 μm和100 μm等不同大小、不同复杂程度的金结构证实了此方法在微纳制造中的通用性。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"\"Sketch and Peel\" lithography (SPL) has demonstrated the potential to improve the efficiency of electron beam direct writing. However, it is time-consuming to design exposure layouts for complex patterns. In this study, we proposed a method to generate SPL layouts for complex patterns using an edge tracing algorithm to extract digital image contours. First, the color image was converted to a binary image by image graying and the Otsu adaptive threshold segmentation algorithm. Then, the boundary of the binary image was traced by the MATLAB bwboundaries function. Finally, the MATLAB GDS toolbox was utilized to transform the traced boundary to layouts for exposure. The experiments confirmed that the proposed method is effective for extracting the boundaries of images and converting them to layouts. As shown by fabricating a maple leaf-like pattern, the generated layout still maintains its high graphic fidelity when applied to SPL. The versatility of the proposed method for micro-nanomanufacturing was also verified by fabricating other complex patterns of different sizes and different geometries."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"跨尺度微纳制造"}],[{"name":"text","data":"轮廓曝光"}],[{"name":"text","data":"电子束曝光"}],[{"name":"text","data":"边界追踪"}]]},{"lang":"en","data":[[{"name":"text","data":"multi-scale patterning"}],[{"name":"text","data":"\"sketch and peel\" lithography"}],[{"name":"text","data":"electron-beam lithography"}],[{"name":"text","data":"edge tracing"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"1"}],"title":[{"name":"text","data":"引言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"随着信息技术的迅猛发展,智能手机及移动互联网等产品深刻地改变了人们的交流、消费以及生活方式,为人们的社会生活提供了巨大的便利。半导体芯片作为信息产品的“心脏”,是现代信息技术的基石,其发展离不开形式多样的微纳加工技术。电子束直写(Electron Beam Direct Writing, EBDW)是利用高能电子束在物体表面制造图形的一种微纳加工技术,由于分辨率高,无掩模,光刻胶种类丰富和加工工艺灵活多样的特性"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}}],"rid":["b1","b2","b3","b4"],"text":"1-4","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":",被广泛地应用于芯片制造产业的器件物理基础研究、原型器件开发以及光刻掩模制备。然而,EBDW在大面积微纳加工过程中,存在加工效率低,边缘尖锐和微小沟道由于临近效应难以成型"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"5","type":"bibr","rid":"b5","data":[{"name":"text","data":"5"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"等难题,限制了其实际应用范围。因此,如何有效地提高EBDW的加工效率并尽量避免邻近效应一直是EBDW技术中的核心问题。"}]},{"name":"p","data":[{"name":"text","data":"2016年,湖南大学陈艺勤等提出了一种基于EBDW的轮廓曝光(Sketch and Peel Lithography, SPL)微纳加工工艺"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"6","type":"bibr","rid":"b6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",为某些跨尺度结构的快速加工提供了解决方案。SPL的主要流程为:(1)曝光图形的轮廓并显影;(2)沉积金属;(3)剥离轮廓外围的金属从而得到目标金属结构。相较于传统EBDW工艺,SPL不需要曝光所有目标区域,只需曝光目标图形的边缘,因此其曝光面积大大减少,加工速率可提升上百倍。与此同时,由于是单线条曝光,EBDW曝光过程中临近效应的不利影响得到了有效抑制,因此SPL在跨尺寸图案的加工过程中具有极高的图形保真度。SPL的这些优点极大地拓宽了EBDW在跨尺度微纳制造中的使用范围。例如,张轼等人利用SPL工艺成功制备出性能优良的极小尺寸等离激元纳米结构,并应用在Fano共振与非线性光学领域中"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"7","type":"bibr","rid":"b7","data":[{"name":"text","data":"7"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。特别值得一提的是,轮廓曝光的概念还可以拓展到聚焦离子束(Focused Ion Beam, FIB)加工技术中,可大幅拓展FIB的加工能力"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"8","type":"bibr","rid":"b8","data":[{"name":"text","data":"8"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"然而,SPL工艺目前只用于制备一些图案简单的微纳结构,对于形状复杂微纳结构的制备,其挑战在于版图绘制的困难。一般而言,在微纳加工工艺的基础研究过程中,加工版图主要通过版图绘制软件手动绘制。这种方式在处理简单图案时高效且便利,但是在处理复杂图形时,一方面,手动绘制版图工作量大且异常耗时;另一方面,研究者在长时间的版图绘制过程中难免出错,这会导致版图的准确性和可靠性降低。为了解决SPL在复杂图形版图生成方面的难题,提高版图绘制的效率、准确性及可靠性,本文提出了利用计算机程序提取数字图像目标边缘并将它转换为曝光版图的方法,基于MATLAB平台丰富的应用函数及工具箱,设计了一个用于提取图像边缘并将它转换为曝光版图的应用程序。该方法有效提高了版图绘制的效率和可靠性,所生成的曝光版图可应用于SPL工艺,从而实现复杂图形的高效制备。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2"}],"title":[{"name":"text","data":"边界追踪概述"}],"level":"1","id":"s2"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.1"}],"title":[{"name":"text","data":"边缘检测算子"}],"level":"2","id":"s2-1"}},{"name":"p","data":[{"name":"text","data":"图形边缘作为图像在空间域中的关键特征之一,在数字图像处理中有着非常重要的意义"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"11","type":"bibr","rid":"b11","data":[{"name":"text","data":"11"}]}}],"rid":["b9","b10","b11"],"text":"9-11","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。目前,比较流行的边缘检测算子有Sobel算子、Robert算子、Prewitt算子、LoG算子以及Canny算子。其中,Canny算子拥有不易受噪声干扰,能检测弱边缘等优点,是最为优秀的算子之一。然而,上述算子的提取结果均为二值图像,对边缘坐标并未进行有序排列,而在SPL曝光过程中需要对边缘坐标逐点连线以描绘轮廓。也就是说,在SPL工艺版图生成过程中,边缘检测算子提取到的边缘坐标的排序问题至关重要。目前,还没有程序能通过边缘检测算子的方法直接生成适用于SPL工艺的曝光版图。针对以上问题,本文在SPL版图生成过程中使用边界追踪算法来描绘所需边界,以期直接应用于SPL工艺的版图生成。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.2"}],"title":[{"name":"text","data":"边界追踪算法"}],"level":"2","id":"s2-2"}},{"name":"p","data":[{"name":"text","data":"Gonzalez等在《数字图像处理》一书中系统地描述了Moore边界追踪算法"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"12","type":"bibr","rid":"b12","data":[{"name":"text","data":"12"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",并在随书附带的图像处理工具箱中提供了相应的边界追踪MATLAB函数boundaries。Moore边界追踪算法的主要步骤如下:"}]},{"name":"p","data":[{"name":"text","data":"(1) 在二值图像外围增加宽度为1像素、值为0的外框,防止在寻找边界时出错。"}]},{"name":"p","data":[{"name":"text","data":"(2) 将图像最左上角值为1的像素标记为"},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"西侧的相邻点标记为"},{"name":"italic","data":[{"name":"text","data":"c"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":",顺时针从"},{"name":"italic","data":[{"name":"text","data":"c"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"开始考察与"},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"相邻的8个点,并将第一个值为1的像素标记为"},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":",将"},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"之前的值为0的点标记为"},{"name":"italic","data":[{"name":"text","data":"c"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":",并保存"},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"与"},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"。令"},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"text","data":" = "},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"c"}]},{"name":"text","data":" = "},{"name":"italic","data":[{"name":"text","data":"c"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"(3) 继续从"},{"name":"italic","data":[{"name":"text","data":"c"}]},{"name":"text","data":"开始顺时针考察"},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"text","data":"的8个临域"},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"text","data":"1,"}]},{"name":"text","data":" ,"},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"text","data":"2,"}]},{"name":"text","data":" ,"},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"text","data":"3,"}]},{"name":"text","data":" ,…,"},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"text","data":"8"}]},{"name":"text","data":",直到找到下一个值为1的像素"},{"name":"italic","data":[{"name":"text","data":"k"},{"name":"sub","data":[{"name":"text","data":"n"}]}]},{"name":"text","data":"为止,并令"},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"text","data":" = "},{"name":"italic","data":[{"name":"text","data":"k"},{"name":"sub","data":[{"name":"text","data":"n"}]}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"c"}]},{"name":"text","data":" = "},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"-1"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"(4)重复步骤(3),直到"},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"text","data":"返回初始位置"},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"并找到下一个边界点"},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"为止。"}]},{"name":"p","data":[{"name":"text","data":"Boundaries函数在图像质量较高、纹理简单、边界密度不高的情况下能够追踪出比较完整的边界,但是当图像噪声严重、图形较复杂、边界密度高时,获得的结果往往不够理想。在最近几个较新版本的MATLAB中,数字图像工具箱新增了bwboundaries函数,此函数可以对二值图像进行外边界以及内部孔洞边界的追踪。相较于第三方工具箱中的boundaries函数,MATLAB官方提供的bwboundaries函数在高密度边界下追踪复杂图形时具有边界完整度高和边界强度好等优点,因此本文采用bwboundaries函数进行程序中的图形边界追踪。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.3"}],"title":[{"name":"text","data":"图像预处理"}],"level":"2","id":"s2-3"}},{"name":"p","data":[{"name":"text","data":"一般的数字图像并不能直接应用于边界追踪,需要进行一些预处理,将它转换为二值图像后才能应用于bwboundaries函数。本文将图像灰度化,并通过Otsu自适应阈值分割算法将彩色数字图像转换为二值图像,并应用于边界追踪中。"}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.3.1"}],"title":[{"name":"text","data":"图像灰度化"}],"level":"3","id":"s2-3-1"}},{"name":"p","data":[{"name":"text","data":"现代数字图像的颜色一般由R(红),G(绿),B(蓝)三基色混色而来,但是人眼对于R,G,B 3色的敏感度却存在一定差异,在使用700(红),546.1(绿)和435.8 nm(蓝)三单色光源匹配等能白光时其亮度比例为1.000:4.591:0.060"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"13","type":"bibr","rid":"b13","data":[{"name":"text","data":"13"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",因此在将彩色图像转换为灰度图像时也应对其像素的RGB值赋以不同权重。彩色数字图像灰度转换公式如下"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"14","type":"bibr","rid":"b14","data":[{"name":"text","data":"14"}]}},{"name":"text","data":"]"}]},{"name":"text","data":":"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"1"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714878&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714878&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714878&type=middle"}}}],"id":"gxjmgc-27-3-584-E1"}}]},{"name":"p","data":[{"name":"text","data":"其中"},{"name":"italic","data":[{"name":"text","data":"Y"}]},{"name":"text","data":"为RGB值对应的灰度值,"},{"name":"italic","data":[{"name":"text","data":"R"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"G"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"B"}]},{"name":"text","data":"分别为对应的RGB值。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.3.2"}],"title":[{"name":"text","data":"Otsu自适应阈值分割算法"}],"level":"3","id":"s2-3-2"}},{"name":"p","data":[{"name":"text","data":"Otsu阈值分割算法是Otsu于1979年提出来的一种阈值分割方案"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"15","type":"bibr","rid":"b15","data":[{"name":"text","data":"15"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。该方案基于类间方差最大化进行分割,通过计算灰度图像类间方差的最大值选取最佳分割阈值,再将图像分为目标与背景两种类型。该方法由于计算简单、稳定、自适应强,被广泛应用于数字图像分割。"}]}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3"}],"title":[{"name":"text","data":"版图生成程序设计"}],"level":"1","id":"s3"}},{"name":"p","data":[{"name":"text","data":"本程序的流程如"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"所示。由图可见,本程序主要由以下三部分组成:"}]},{"name":"fig","data":{"id":"Figure1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"text","data":"版图生成程序流程"}]},{"lang":"en","label":[{"name":"text","data":"Fig 1"}],"title":[{"name":"text","data":"Flowchart of pattern generation programs"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714892&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714892&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714892&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"(1) 图片读取及图片预处理,如"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"中标记①所示。首先需要将彩色图像转换为灰度图像,再使用自适应阈值算子将灰度图像转换为背景为0、图形为1的二值图像。与此同时,分割后的二值图中一部分背景分布在目标图形内部(例如"},{"name":"xref","data":{"text":"图 2(c)","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2(c)"}]}},{"name":"text","data":"中圆圈标记处),导致得到的二值图像内部有杂点,而SPL工艺要求图形轮廓内部没有杂点才能得到完整无瑕的结构,因此需要对二值图像目标图形中的孔洞进行填充。此外,由于图像差异性,某些背景颜色较深的图像分割以后的二值图背景为1,目标图形为0,此时若依然对二值图中的孔洞进行填充操作,则会将图像中的目标图形完全覆盖,因此在填充孔洞之前增加了人工判断过程,并在二值图像背景为1时反转二值图像。预处理流程的效果图如"},{"name":"xref","data":{"text":"图 2(a)","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2(a)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"2(d)","type":"fig","rid":"Figure2","data":[{"name":"text","data":"2(d)"}]}},{"name":"text","data":"所示,其中"},{"name":"xref","data":{"text":"图 2(d)","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2(d)"}]}},{"name":"text","data":"为最终效果图。从中可以发现,MATLAB自适应阈值算子可以准确地识别目标图形以及背景,并在孔洞填充后获得了完美的二值图像。"}]},{"name":"fig","data":{"id":"Figure2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"text","data":"图像转换流程图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 2"}],"title":[{"name":"text","data":"Flowchart of image conversion procedures"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714913&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714913&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714913&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"(2) 边界追踪及数据优化,如"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"中标记②所示。本部分主要利用bwboundaries函数追踪了二值图的边界。在获取边界后,由于返回结果中存在一些孤立的点和线段,而这些点和线段并不是目标图形的组成部分,其存在不仅会增加加工过程中EBDW的曝光时间,而且会对目标图形的应用产生不利影响,因此需要进行清除。清除这些孤立的点和线段的大致思路为:边界追踪的路径必然是开头与结尾相连的封闭图形,因此可以通过比较获得的边界坐标数"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"和坐标唯一化后的边界坐标数"},{"name":"italic","data":[{"name":"text","data":"u"}]},{"name":"text","data":"来判断孤立的点和线段,若"},{"name":"italic","data":[{"name":"text","data":"u"}]},{"name":"text","data":"+1≤"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":" "},{"name":"text","data":"<"},{"name":"text","data":" 2 "},{"name":"italic","data":[{"name":"text","data":"u"}]},{"name":"text","data":"-1则说明该结果不是孤立的点或线段应予以保留,其它情况则予以删除。由于位图的特性,边界追踪的结果即使是一条线段也有可能由许多点构成,而不是只有线段的端点,这些线段中端点以外的点并无实际意义且会增加曝光系统的数据读取时间,降低曝光效率,因此这些点也应尽量被清除。具体过程为:首先逐个求取边界中任意相邻两个点确定线段的斜率,获得斜率数组["},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"text","data":"3"}]},{"name":"text","data":",…,"},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"-1"}]},{"name":"text","data":"];再对斜率数组进行错位相减,即"},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"text","data":"21"}]},{"name":"text","data":" = "},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"-"},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"text","data":"32"}]},{"name":"text","data":" = "},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"text","data":"3"}]},{"name":"text","data":"-"},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":",…,"},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"-1)("},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"-2)"}]},{"name":"text","data":" = "},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"-1"}]},{"name":"text","data":"-"},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"-2"}]},{"name":"text","data":",获得斜率差数组[1,"},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"text","data":"21"}]},{"name":"text","data":", …, "},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"sub","data":[{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"-1)("},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"-2)"}]},{"name":"text","data":"];最后,通过获取非零值在斜率差数组的位置,即可获得组成边界的线段端点坐标。而对于斜率计算过程中出现的无限大情形,由于边界追踪为8领域追踪,斜率值只能为-∞, -1, 0, 1, ∞这5种结果,因此只需将∞替换为不为±1的非零值即可。最终的边界追踪效果图如"},{"name":"xref","data":{"text":"图 2(e)","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2(e)"}]}},{"name":"text","data":"所示。"}]},{"name":"p","data":[{"name":"text","data":"(3) 数据归一化及版图生成,如"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"中标记③所示。由于图像分辨率的差异,边界追踪获得的坐标也会随之不同,若直接使用原始的边界坐标生成版图,则会导致版图中结构尺寸随图像分辨率的变化而改变。为了使生成版图中结构的尺寸可控,需要对追踪到的边界坐标数值进行归一化处理,所以部分(2)中获得的边界坐标在本部分中进行了归一化。坐标归一化算法的基本思路为:首先获取边界最左侧、最右侧、最上部和最下部点的坐标"},{"name":"italic","data":[{"name":"text","data":"A"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"x"},{"name":"sub","data":[{"name":"text","data":"a"}]}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"y"},{"name":"sub","data":[{"name":"text","data":"a"}]}]},{"name":"text","data":"),"},{"name":"italic","data":[{"name":"text","data":"B"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"x"},{"name":"sub","data":[{"name":"text","data":"b"}]}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"y"},{"name":"sub","data":[{"name":"text","data":"b"}]}]},{"name":"text","data":"),"},{"name":"italic","data":[{"name":"text","data":"C"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"x"},{"name":"sub","data":[{"name":"text","data":"c"}]}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"y"},{"name":"sub","data":[{"name":"text","data":"c"}]}]},{"name":"text","data":"),"},{"name":"italic","data":[{"name":"text","data":"D"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"x"},{"name":"sub","data":[{"name":"text","data":"d"}]}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"y"},{"name":"sub","data":[{"name":"text","data":"d"}]}]},{"name":"text","data":");然后计算图形横向长度"},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"sub","data":[{"name":"text","data":"lat"}]},{"name":"text","data":" = "},{"name":"italic","data":[{"name":"text","data":"x"},{"name":"sub","data":[{"name":"text","data":"b"}]},{"name":"text","data":"-x"},{"name":"sub","data":[{"name":"text","data":"a"}]}]},{"name":"text","data":"和纵向长度"},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"sub","data":[{"name":"text","data":"long"}]},{"name":"text","data":" = "},{"name":"italic","data":[{"name":"text","data":"y"},{"name":"sub","data":[{"name":"text","data":"c"}]},{"name":"text","data":"-y"},{"name":"sub","data":[{"name":"text","data":"d"}]}]},{"name":"text","data":",取"},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"sub","data":[{"name":"text","data":"lat"}]},{"name":"text","data":"与"},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"sub","data":[{"name":"text","data":"long"}]},{"name":"text","data":"中较大值得"},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"sub","data":[{"name":"text","data":"max"}]},{"name":"text","data":";最后对所有边界点进行归一化运算,以点"},{"name":"italic","data":[{"name":"text","data":"M"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"x"},{"name":"sub","data":[{"name":"text","data":"i"}]}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"y"},{"name":"sub","data":[{"name":"text","data":"i"}]}]},{"name":"text","data":")为例,即"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"sub","data":[{"name":"italic","data":[{"name":"text","data":"i"}]},{"name":"text","data":"_normalized"}]},{"name":"text","data":" = ("},{"name":"italic","data":[{"name":"text","data":"x"},{"name":"sub","data":[{"name":"text","data":"i"}]},{"name":"text","data":"-x"},{"name":"sub","data":[{"name":"text","data":"a"}]}]},{"name":"text","data":")/"},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"sub","data":[{"name":"text","data":"max"}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"y"}]},{"name":"sub","data":[{"name":"italic","data":[{"name":"text","data":"i"}]},{"name":"text","data":"_normalized"}]},{"name":"text","data":" = ("},{"name":"italic","data":[{"name":"text","data":"y"},{"name":"sub","data":[{"name":"text","data":"i"}]},{"name":"text","data":"-y"},{"name":"sub","data":[{"name":"text","data":"d"}]}]},{"name":"text","data":")/"},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"sub","data":[{"name":"text","data":"max"}]},{"name":"text","data":",则可获得归一化边界坐标"},{"name":"italic","data":[{"name":"text","data":"M"}]},{"name":"sub","data":[{"name":"text","data":"normalized"}]},{"name":"text","data":" ("},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"sub","data":[{"name":"italic","data":[{"name":"text","data":"i"}]},{"name":"text","data":"_normalized"}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"y"}]},{"name":"sub","data":[{"name":"italic","data":[{"name":"text","data":"i"}]},{"name":"text","data":"_normalized"}]},{"name":"text","data":")。本部分的最后一步亦是整个程序的最后一步,这里通过第三方GDS工具箱将归一化坐标生成GDS版图,并进行保存。"}]},{"name":"p","data":[{"name":"text","data":"为了检验本文设计的程序的有效性,利用开源版图软件klayout查看生成的版图,结果如"},{"name":"xref","data":{"text":"图 2(f)","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2(f)"}]}},{"name":"text","data":"所示。从图中可以发现,本文设计的程序可以有效地提取“枫叶”边缘并生成GDS版图,说明该程序可以用于生成复杂结构版图。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4"}],"title":[{"name":"text","data":"实验"}],"level":"1","id":"s4"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.1"}],"title":[{"name":"text","data":"电子束直写"}],"level":"2","id":"s4-1"}},{"name":"p","data":[{"name":"text","data":"首先以3 000 r/min的转速将电子光刻胶氢倍半硅氧烷(Hydrogen Silsesquioxane, HSQ, XR-1541-006, Dow Corning)旋涂在氧化硅片(氧化层厚度为(285±10) nm,苏州研材微纳科技有限公司)上。旋涂之后,将样品装载到电子束光刻系统中(Raith 150"},{"name":"sup","data":[{"name":"text","data":"Two"}]},{"name":"text","data":")进行曝光,在曝光过程中电子束的加速电压为30 kV,曝光线剂量为30 000 pC·cm"},{"name":"sup","data":[{"name":"text","data":"-1"}]},{"name":"text","data":"。曝光之后,使用盐显影液(1% NaOH + 4% NaCl)进行显影,显影时间为60 s。紧接着,用去离子水冲洗样品60 s除去残留的显影液以及盐颗粒,并迅速用异丙醇(IPA)冲洗样品30 s,这是由于IPA相对于水拥有较小的表面张力,可以降低HSQ薄壁在干燥过程中倒塌的可能性,最后则用氮气流干燥样品。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.2"}],"title":[{"name":"text","data":"金属沉积"}],"level":"2","id":"s4-2"}},{"name":"p","data":[{"name":"text","data":"金属沉积过程利用真空热蒸发镀膜系统(JSD300, 安徽嘉硕真空科技有限公司)实现。首先将热蒸发机腔体气压预抽至1×10"},{"name":"sup","data":[{"name":"text","data":"-5"}]},{"name":"text","data":" Pa以下,接着将30 nm金沉积在显影后的样品上。蒸发速率为1×10"},{"name":"sup","data":[{"name":"text","data":"-10"}]},{"name":"text","data":" m/s,蒸发过程中腔体气压保持在5×10"},{"name":"sup","data":[{"name":"text","data":"-3"}]},{"name":"text","data":" Pa以下,以保证金属薄膜的质量,蒸发过程中样品温度一直维持在25 ℃,用来预防蒸发过程中高温可能对样品造成的破坏。在整个蒸发过程中,金属薄膜的厚度由具有埃米级灵敏度的石英晶体微天平测量,确保薄膜厚度的准确性。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.3"}],"title":[{"name":"text","data":"剥离"}],"level":"2","id":"s4-3"}},{"name":"p","data":[{"name":"text","data":"用紫外光固化胶(NOA-61, Norland Products Inc.)完全覆盖到金沉积后的样品上,然后静置60 s,随后利用紫外灯照射样品20 min固化紫外固化胶,最后从边缘缓慢剥离固化后的紫外固化胶,获得未去除HSQ模板的金属结构。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.4"}],"title":[{"name":"text","data":"形貌与光学表征"}],"level":"2","id":"s4-4"}},{"name":"p","data":[{"name":"text","data":"电子束光刻系统(Raith 150"},{"name":"sup","data":[{"name":"text","data":"Two"}]},{"name":"text","data":")用来表征样品的形貌及结构,在SEM图像拍摄过程中,系统电子束的加速电压为5 kV,工作距离为10.3 mm。样品的光学图像由装备有5×(0.13 NA),10×(0.25 NA),20×(0.4 NA),50×(0.75 NA)和100×(0.85 NA)物镜的光学显微镜(Carl-Zeiss, AXIO-10)获得,光源为100 W的卤素灯,光源色温为3 200 K,相机参数均采用软件默认设置,曝光时间为9 ms,白平衡通过软件自适应调节。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.5"}],"title":[{"name":"text","data":"计算机平台"}],"level":"2","id":"s4-5"}},{"name":"p","data":[{"name":"text","data":"本文涉及的程序运行计算机的处理器为Intel Core i7-8550U@1.8 GHz, 内存为16 GB,系统为Microsoft Windows 10,软件为MATLAB R2017a。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"5"}],"title":[{"name":"text","data":"实验结果与分析"}],"level":"1","id":"s5"}},{"name":"p","data":[{"name":"text","data":"为了证实程序的可靠性,本文对版图生成过程进行了实验验证,实验流程如"},{"name":"xref","data":{"text":"图 3","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3"}]}},{"name":"text","data":"所示。标准的SPL加工流程为:步骤1,将HSQ旋涂在氧化硅片(见"},{"name":"xref","data":{"text":"图 3(a)","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3(a)"}]}},{"name":"text","data":")上,如"},{"name":"xref","data":{"text":"图 3(b)","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3(b)"}]}},{"name":"text","data":"所示;步骤2,利用EBDW将程序生成的封闭轮廓图案加工到HSQ上并显影,得到HSQ轮廓模板,如"},{"name":"xref","data":{"text":"图 3(c)","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3(c)"}]}},{"name":"text","data":"所示,其中"},{"name":"xref","data":{"text":"图 3(c)(ⅱ)","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3(c)(ⅱ)"}]}},{"name":"text","data":"为样品的俯视图;步骤3,将30 nm的金沉积到显影后的样品上,如"},{"name":"xref","data":{"text":"图 3(d)","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3(d)"}]}},{"name":"text","data":"所示,在蒸发过程中绝对不能使用金属钛或者金属铬作为黏附层;步骤4,将适量紫外固化胶覆盖在样品上并用紫外灯照射固化("},{"name":"xref","data":{"text":"图 3(e)","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3(e)"}]}},{"name":"text","data":"),最后将固化后的紫外固化胶剥离("},{"name":"xref","data":{"text":"图 3(f)","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3(f)"}]}},{"name":"text","data":"),得到目标结构如"},{"name":"xref","data":{"text":"图 3(f)","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3(f)"}]}},{"name":"text","data":"所示,其中"},{"name":"xref","data":{"text":"图 3(f)(ⅱ)","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3(f)(ⅱ)"}]}},{"name":"text","data":"为俯视图。最终目标结构的HSQ模板可以根据实际的不同需求选择性地去除或者保留,由于HSQ曝光后的性质与二氧化硅(SiO"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":")相类似,都是光学透明的,所以对于绝大部分应用而言都可保留下来,而若要去除模板,则可通过刻蚀的方法将HSQ模板去除"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"16","type":"bibr","rid":"b16","data":[{"name":"text","data":"16"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"fig","data":{"id":"Figure3","caption":[{"lang":"zh","label":[{"name":"text","data":"图3"}],"title":[{"name":"text","data":"轮廓曝光实验流程图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 3"}],"title":[{"name":"text","data":"Fabrication processes of \"sketch and peel\" lithography"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714934&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714934&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714934&type=middle"}]}},{"name":"p","data":[{"name":"xref","data":{"text":"图 4","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4"}]}},{"name":"text","data":"展示了样品在不同步骤下的光学图像以及扫描电子显微镜(Scanning Electron Microscopy, SEM)图像。"},{"name":"xref","data":{"text":"图 4(a)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(a)"}]}},{"name":"text","data":"为实验使用的“枫叶”原图。"},{"name":"xref","data":{"text":"图 4(b)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(b)"}]}},{"name":"text","data":"为样品在曝光显影之后HSQ模板的暗场光学图像,从此图中可以发现HSQ模板由于散射光的作用显现出了“枫叶”轮廓,这说明本程序基于"},{"name":"xref","data":{"text":"图 4(a)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(a)"}]}},{"name":"text","data":"生成的版图可以应用于电子束直写中,而且在实验中也成功得到了目标图形。"},{"name":"xref","data":{"text":"图 4(c)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(c)"}]}},{"name":"text","data":"为样品在沉积30 nm金之后的明场光学图像,可以发现沉积的金被HSQ模板分成了2部分,分别是HSQ模板之外的金和HSQ模板之内的金,其中HSQ模板内的金才是我们所需的金结构。实际上,HSQ模板上也沉积有一部分金,但是由于HSQ模板的线宽(数十纳米)相对整个图形(100"},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"m)而言实在太窄,所以在光学图像中并不能直接观察到这部分金。"},{"name":"xref","data":{"text":"图 4(d)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(d)"}]}},{"name":"text","data":"所示为利用紫外固化胶剥离了HSQ模板外围和模板上的金后的照片。由于HSQ模板对于内部金的保护作用,模板轮廓内部的金并未被剥离,而HSQ模板外围和模板上部的金由于缺乏保护且与衬底的黏附性较差而被紫外固化胶完整地剥离。"},{"name":"xref","data":{"text":"图 4(d)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(d)"}]}},{"name":"text","data":"中“枫叶”上的黑点为残留的紫外固化胶,可以通过氧等离子将它清除。因此,通过SPL工艺获得的样品可以拥有非常干净的表面,这一点对于其光学应用而言非常重要。此外,最终获得的“枫叶”金结构在形状上与HSQ模板一致,表明SPL具有极高的图形保真度。"}]},{"name":"fig","data":{"id":"Figure4","caption":[{"lang":"zh","label":[{"name":"text","data":"图4"}],"title":[{"name":"text","data":"(a) 原始“枫叶”图片;(b~d)各实验步骤获得的光学图像:(b)曝光后HSQ模板的暗场散射光学图像;(c)沉积30 nm金之后的光镜光学图像;(d)剥离紫外固化胶之后样品的光学图像;(e~f)样品剥离之后的SEM图:(e)图(d)中方框标记区域的局部放大SEM照片;(f)图(e)中方框标记区域的局部放大SEM照片"}]},{"lang":"en","label":[{"name":"text","data":"Fig 4"}],"title":[{"name":"text","data":"(a) The original maple leaf image. (b-d)The optical photographs captured in fabrication steps: (b) The dark field optical photograph of the sample after exposure. (c) The optical photograph of the sample after depositing with 30 nm gold. (d) The optical photograph of the sample after stripping UV-curable adhesive. (e-f)The SEM images of the sample: (e) The enlarged SEM image enclosed in the square in (d). (f) The enlarged SEM image enclosed in the square in (e)"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714951&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714951&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714951&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"为了进一步验证本文提出方法生成的曝光图案在SPL制作复杂图形的过程中依然可以保持跨尺寸加工的可靠性,在"},{"name":"xref","data":{"text":"图 4(e)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(e)"}]}},{"name":"text","data":"与"},{"name":"xref","data":{"text":"4(f)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"4(f)"}]}},{"name":"text","data":"中展示了样品微小区域的细节放大SEM图像。从图中可以看出,从亚毫米("},{"name":"xref","data":{"text":"图 4(d)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(d)"}]}},{"name":"text","data":")到亚微米("},{"name":"xref","data":{"text":"图 4(e)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(e)"}]}},{"name":"text","data":")最后再到纳米尺度("},{"name":"xref","data":{"text":"图 4(f)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(f)"}]}},{"name":"text","data":"),由于HSQ模板的限制,金结构的轮廓在横跨3个尺度数量级的情形下仍然与HSQ模板一致,说明该方法在跨尺度的情形下能够保有极高的图形保真度。"}]},{"name":"p","data":[{"name":"text","data":"此外,为了进一步验证应用程序提取的边缘与SPL工艺在不同类型图形上的通用性,本文利用SPL工艺制作了其他一些具有复杂边缘轮廓的图形,结果如"},{"name":"xref","data":{"text":"图 5","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5"}]}},{"name":"text","data":"所示。"},{"name":"xref","data":{"text":"图 5(a)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5(a)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"5(b)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"5(b)"}]}},{"name":"text","data":"分别为条幅黑体汉字和Bauhaus 93字母与数字(按长边长度来计算,整体尺寸为100 "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"m),从图中可以看出制备的字体轮廓分明、清晰可辨,这表明SPL工艺在文字样品加工中的潜力。基于这一功能,SPL工艺在未来有望应用于微纳尺度的文字快速打印。"},{"name":"xref","data":{"text":"图 5(c)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5(c)"}]}},{"name":"text","data":"和"},{"name":"xref","data":{"text":"5(f)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"5(f)"}]}},{"name":"text","data":"分别为国家重点实验室(State Key Laboratory, SKL)与“辐射危害”的徽标,"},{"name":"xref","data":{"text":"图 5(e)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5(e)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"5(h)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"5(h)"}]}},{"name":"text","data":"为不同植物与动物的剪影,以上结构的整体尺寸均为100"},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"m(按图像较长边的长度来计算)。"},{"name":"xref","data":{"text":"图 5(i)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5(i)"}]}},{"name":"text","data":"为整体尺寸为50 "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"m的卡通猫剪影,用于证明本文方法在不同尺寸图形下的通用性及可靠性。"},{"name":"xref","data":{"text":"图 5(e)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5(e)"}]}},{"name":"text","data":"和"},{"name":"xref","data":{"text":"5(f)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"5(f)"}]}},{"name":"text","data":"中复杂多折点以及高密度图形的成功制备证明了SPL在高度复杂图形上的可行性。"},{"name":"xref","data":{"text":"图 5(g)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5(g)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"5(i)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"5(i)"}]}},{"name":"text","data":"为一系列精美的动物剪影,这些栩栩如生的图形突显出SPL在微纳尺度艺术结构的设计及加工中的应用潜力。上述不同尺寸和形状的复杂微纳结构的成功制备,证实了本论文中设计的图形边缘提取应用程序与SPL工艺相结合后具有制备复杂微纳图形的通用能力。更重要的是,本程序通过提取数字图像的图形轮廓可以直接得到目标结构的曝光版图,极大地节省了研究人员在复杂版图绘制过程中花费的时间与精力,同时,应用计算机程序提取图形的过程保证了曝光版图的准确性,为后续目标结构的成功加工和制备提供了保障。"}]},{"name":"fig","data":{"id":"Figure5","caption":[{"lang":"zh","label":[{"name":"text","data":"图5"}],"title":[{"name":"text","data":"利用本文所提方法得到的曝光版图结合SPL工艺制备出的不同图形的光学图像"}]},{"lang":"en","label":[{"name":"text","data":"Fig 5"}],"title":[{"name":"text","data":"Optical images of different patterns fabricated by SPL process based on the layouts obtained from the proposed method"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714979&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714979&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1714979&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"6"}],"title":[{"name":"text","data":"结论"}],"level":"1","id":"s6"}},{"name":"p","data":[{"name":"text","data":"本文提出了一种基于Otsu自适应阈值分割法、bwboundaries函数及GDS工具箱的MATLAB应用程序。本程序通过提取数字图像的图形边界并将它转换为GDS版图的方法,将复杂数字图像转换为SPL版图。通过制备“枫叶”图形确认了本程序与SPL工艺的兼容性以及SPL在与本程序结合的情形下所具备的跨尺度(纳米尺度到亚毫米尺度)图形的高保真度制造能力。不同大小、不同复杂程度以及不同密度的微纳金结构的成功制备,证实了本程序与SPL工艺结合具有加工复杂图案的通用性。鉴于数字图像在互联网上易于获取且图像编辑软件快速而功能强大,本应用程序可以大大降低研究人员某些复杂版图上的绘制难度与时间,提高加工效率,从而拓展SPL工艺的应用范围。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"b1","label":"1","citation":[{"lang":"en","text":[{"name":"text","data":"KOZAWA T, YOSHIDA Y, UESAKA M, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Radiation-induced acid generation reactions in chemically amplified resists for electron beam and X-ray lithography[J]."},{"name":"italic","data":[{"name":"text","data":"The Japan Society of Applied Physics"}]},{"name":"text","data":", 1992, 31(12): 4301-4306."}]}]},{"id":"b2","label":"2","citation":[{"lang":"en","text":[{"name":"text","data":"PARIKH M. Corrections to proximity effects in electron beam lithography. I. Theory[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Applied Physics"}]},{"name":"text","data":", 1979, 50(6): 4371-4377."}]}]},{"id":"b3","label":"3","citation":[{"lang":"en","text":[{"name":"text","data":"FULTON T A, DOLAN G J. New approach to electron beam lithography[J]."},{"name":"italic","data":[{"name":"text","data":"Applied Physics Letters"}]},{"name":"text","data":", 1983, 42(8): 752-754."}]}]},{"id":"b4","label":"4","citation":[{"lang":"en","text":[{"name":"text","data":"LI W D, LIANG X, CHOU S Y. Nanoscale negative-tone quantized patterning by novel selective electrochemical etching of a nanoimprinted sub-200 nm bimetallic tile array[J]."},{"name":"italic","data":[{"name":"text","data":"Nanotechnology"}]},{"name":"text","data":", 2012, 23(35): 355303."}]}]},{"id":"b5","label":"5","citation":[{"lang":"en","text":[{"name":"text","data":"CORD B, YANG J, DUAN H G, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Limiting factors in sub-10 nm scanning-electron-beam lithography[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Vacuum Science & Technology. B"}]},{"name":"text","data":", 2009, 41(5892): 2616-2621."}]}]},{"id":"b6","label":"6","citation":[{"lang":"en","text":[{"name":"text","data":"CHEN Y Q, XIANG Q, LI ZH Q, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. \"Sketch and Peel\" lithography for high-resolution multiscale patterning[J]."},{"name":"italic","data":[{"name":"text","data":"Nano Letters"}]},{"name":"text","data":", 2016, 16(5): 3253-3259."}]}]},{"id":"b7","label":"7","citation":[{"lang":"en","text":[{"name":"text","data":"ZHANG S, LI G C, CHEN Y Q, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Pronounced fano resonance in single gold split nanodisks with 15-nm split gaps for intensive second harmonic generation[J]."},{"name":"italic","data":[{"name":"text","data":"ACS Nano"}]},{"name":"text","data":", 2016, 10(12): 11105."}]}]},{"id":"b8","label":"8","citation":[{"lang":"en","text":[{"name":"text","data":"CHEN Y Q, BI K X, WANG Q J, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Rapid focused ion beam milling based fabrication of plasmonic nanoparticles and assemblies via \"Sketch and Peel\" strategy[J]."},{"name":"italic","data":[{"name":"text","data":"ACS Nano"}]},{"name":"text","data":", 2016, 10(12): 11228."}]}]},{"id":"b9","label":"9","citation":[{"lang":"zh","text":[{"name":"text","data":"李海, 张宪民, 黄沿江, 等.光学显微线条纹图像中心线提取[J].光学 精密工程, 2017, 25(5): 1340-1347."}]},{"lang":"en","text":[{"name":"text","data":"LI H, ZHANG X M, HUANG Y J, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Centerline extraction of stripe imaged by optical microscope[J]."},{"name":"italic","data":[{"name":"text","data":"Opt. Precision Eng."}]},{"name":"text","data":", 2017, 25(5): 1340-1347. (in Chinese)"}]}]},{"id":"b10","label":"10","citation":[{"lang":"zh","text":[{"name":"text","data":"黄鹤, 宋京, 盛广峰, 等.雾霾天气下交通图像的边缘检测算子[J].光学 精密工程, 2017, 25(10): 244-249."}]},{"lang":"en","text":[{"name":"text","data":"HUANG H, SONG J, SHENG G F "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Detection operator for traffic image in hazy weather[J]."},{"name":"italic","data":[{"name":"text","data":"Opt. Precision Eng."}]},{"name":"text","data":", 2017, 25(10): 244-249. (in Chinese)"}]}]},{"id":"b11","label":"11","citation":[{"lang":"zh","text":[{"name":"text","data":"余金栋, 张宪民.用于线纹显微图像的边缘检测算法[J].光学 精密工程, 2015, 23(1): 271-281."}]},{"lang":"en","text":[{"name":"text","data":"YU J D, ZHANG X M. Edge detection algorithm for lines on microscopic image[J]."},{"name":"italic","data":[{"name":"text","data":"Opt. Precision Eng."}]},{"name":"text","data":", 2015, 23(1): 271-281. (in Chinese)"}]}]},{"id":"b12","label":"12","citation":[{"lang":"zh","text":[{"name":"text","data":"GONZALEZ R C, WOODS R E.数字图像处理[M].第三版.北京:北京电子工业出版社, 2017."}]},{"lang":"en","text":[{"name":"text","data":"GONZALEZ R C, WOODS R E. "},{"name":"italic","data":[{"name":"text","data":"Digital Image Processing"}]},{"name":"text","data":"[M]. Third Edition. Beijing: Publishing House of Electronics Industry, 2017. (in Chinese)"}]}]},{"id":"b13","label":"13","citation":[{"lang":"zh","text":[{"name":"text","data":"胡威捷, 汤顺青, 朱正芳.现代颜色技术原理及应用[M].北京:北京理工大学出版社, 2007."}]},{"lang":"en","text":[{"name":"text","data":"HU W J, TANG SH Q, ZHU ZH F. "},{"name":"italic","data":[{"name":"text","data":"Modern Color Science and Application"}]},{"name":"text","data":" [M]. Beijing: Beijing Institute of Technology Press. 2007. (in Chinese)"}]}]},{"id":"b14","label":"14","citation":[{"lang":"zh","text":[{"name":"text","data":"刘庆祥, 蒋天发.彩色与灰度图像间转换算法的研究[J].武汉理工大学学报:交通科学与工程版, 2003, 27(3): 344-346."}]},{"lang":"en","text":[{"name":"text","data":"LIU Q X, JIANG T F. A study of translation arithmetic between color image and grey image[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Wuhan University of Technology: Transportation Science & Engineering"}]},{"name":"text","data":", 2003, 27(3): 344-346. (in Chinese)"}]}]},{"id":"b15","label":"15","citation":[{"lang":"en","text":[{"name":"text","data":"OSTU N. A threshold selection method from gray-level histogram[J]."},{"name":"italic","data":[{"name":"text","data":"IEEE Transactions on Systems, Man, and Cybernetics,"}]},{"name":"text","data":" 1979, 9(1): 62-66."}]}]},{"id":"b16","label":"16","citation":[{"lang":"en","text":[{"name":"text","data":"XIANG Q, CHEN Y Q, LI Z Q, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. An anti-ultrasonic-stripping effect in confined micro/nanoscale cavities and its applications for efficient multiscale metallic patterning[J]."},{"name":"italic","data":[{"name":"text","data":"Nanoscale"}]},{"name":"text","data":", 2016, 8: 19541-19550."}]}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.3788/OPE.20192703.0584","clc":[[{"name":"text","data":"TN305.7"}]],"dc":[],"publisherid":"gxjmgc-27-3-584","citeme":[],"fundinggroup":[{"lang":"zh","text":[{"name":"text","data":"国家自然科学基金优秀青年基金资助项目(No.51722503)"}]}],"history":{"received":"2018-10-09","accepted":"2018-11-27","ppub":"2019-03-15","opub":"2020-06-16"},"copyright":{"data":[{"lang":"zh","data":[{"name":"text","data":"版权所有©《光学 精密工程》编辑部2019"}],"type":"copyright"},{"lang":"en","data":[{"name":"text","data":"Copyright ©2019 Optics and Precision Engineering. All rights reserved."}],"type":"copyright"}],"year":"2019"}},"appendix":[],"type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"光学 精密工程","issue":"3","volume":"27","originalSource":[]}