{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"大面积发散太阳模拟器的均匀照明"}]},{"lang":"en","data":[{"name":"text","data":"Uniform illumination method for large-area divergent solar simulators"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"张","givenname":"燃","namestyle":"eastern","prefix":""},{"lang":"en","surname":"ZHANG","givenname":"Ran","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff2","text":"2"}],"role":["first-author"],"bio":[{"lang":"zh","text":["张燃(1984-),男,吉林长春人,博士研究生,讲师,2010年于长春理工大学获得硕士学位,主要研究方向为空间科学与技术、光电仪器与检测技术等。E-mail:33401883@qq.com"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"张燃"}]},{"name":"text","data":"(1984-),男,吉林长春人,博士研究生,讲师,2010年于长春理工大学获得硕士学位,主要研究方向为空间科学与技术、光电仪器与检测技术等。E-mail:"},{"name":"text","data":"33401883@qq.com"}]]}],"email":"33401883@qq.com","deceased":false},{"name":[{"lang":"zh","surname":"张","givenname":"国玉","namestyle":"eastern","prefix":""},{"lang":"en","surname":"ZHANG","givenname":"Guo-yu","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff3","text":"3"},{"rid":"aff4","text":"4"}],"role":["corresp"],"corresp":[{"rid":"cor1","lang":"en","text":"ZHANG Guo-yu, E-mail: zh-guoyu@163.com","data":[{"name":"text","data":"ZHANG Guo-yu, E-mail: zh-guoyu@163.com"}]}],"bio":[{"lang":"zh","text":["张国玉(1962-),男,吉林松原人,教授,博士生导师,2005年于长春理工大学获得博士学位,主要从事空间科学与技术、光电仪器与检测技术等方面的研究工作。E-mail:zh-guoyu@163.com"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"张国玉"}]},{"name":"text","data":"(1962-),男,吉林松原人,教授,博士生导师,2005年于长春理工大学获得博士学位,主要从事空间科学与技术、光电仪器与检测技术等方面的研究工作。E-mail:"},{"name":"text","data":"zh-guoyu@163.com"}]]}],"email":"zh-guoyu@163.com","deceased":false},{"name":[{"lang":"zh","surname":"张","givenname":"健","namestyle":"eastern","prefix":""},{"lang":"en","surname":"ZHANG","givenname":"Jian","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff3","text":"3"},{"rid":"aff4","text":"4"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"徐","givenname":"达","namestyle":"eastern","prefix":""},{"lang":"en","surname":"XU","givenname":"Da","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff3","text":"3"},{"rid":"aff4","text":"4"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"孙","givenname":"高飞","namestyle":"eastern","prefix":""},{"lang":"en","surname":"SUN","givenname":"Gao-fei","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff3","text":"3"},{"rid":"aff4","text":"4"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"刘","givenname":"石","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LIU","givenname":"Shi","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff3","text":"3"},{"rid":"aff4","text":"4"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"苏","givenname":"拾","namestyle":"eastern","prefix":""},{"lang":"en","surname":"SU","givenname":"Shi","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff3","text":"3"},{"rid":"aff4","text":"4"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"杨","givenname":"松洲","namestyle":"eastern","prefix":""},{"lang":"en","surname":"YANG","givenname":"Song-zhou","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff3","text":"3"},{"rid":"aff4","text":"4"}],"role":[],"deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"1","text":"长春理工大学,吉林 长春 130022","data":[{"name":"text","data":"长春理工大学,吉林 长春 130022"}]},{"lang":"en","label":"1","text":"Changchun University of Science and Technology, Changchun 130022, China","data":[{"name":"text","data":"Changchun University of Science and Technology, Changchun 130022, China"}]}]},{"id":"aff2","intro":[{"lang":"zh","label":"2","text":"长春工程技术学院,吉林 长春 130022","data":[{"name":"text","data":"长春工程技术学院,吉林 长春 130022"}]},{"lang":"en","label":"2","text":"Changchun Institute of Technology, Changchun 130022, China","data":[{"name":"text","data":"Changchun Institute of Technology, Changchun 130022, China"}]}]},{"id":"aff3","intro":[{"lang":"zh","label":"3","text":"光电测控与光信息传输技术教育部重点实验室,吉林 长春 130022","data":[{"name":"text","data":"光电测控与光信息传输技术教育部重点实验室,吉林 长春 130022"}]},{"lang":"en","label":"3","text":"Key Laboratory of Optical Control and Optical Information Transmission Technology, Ministry of Education, Changchun 130022, China","data":[{"name":"text","data":"Key Laboratory of Optical Control and Optical Information Transmission Technology, Ministry of Education, Changchun 130022, China"}]}]},{"id":"aff4","intro":[{"lang":"zh","label":"4","text":"吉林省光电测控仪器工程技术研究中心,吉林 长春 130022","data":[{"name":"text","data":"吉林省光电测控仪器工程技术研究中心,吉林 长春 130022"}]},{"lang":"en","label":"4","text":"Jilin Province Engineering Research Center of Optical Measurement and Control Instrumentation, Changchun 130022, China","data":[{"name":"text","data":"Jilin Province Engineering Research Center of Optical Measurement and Control Instrumentation, Changchun 130022, China"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"为实现太阳模拟器的大辐照面积均匀照明,研究了大面积发散太阳模拟器光学系统的设计与仿真。分析了复眼透镜阵列组与发散投影系统的工作原理及旁瓣效应的产生机理;基于嵌套建模思想,结合多项式拟合方法,得出了氙灯轴上的强度分布曲线,并根据氙灯发光能量对称的性质,实现了氙灯空间光强分布的模拟;结合提出的光学系统设计边界条件与参数,设计了光束整形系统、复眼透镜阵列组和发散投影系统。实验结果表明:大面积发散太阳模拟器的工作距离为20 000 mm,辐照面直径为1 500 mm,辐照均匀度为92.8%,满足均匀照明的使用需求。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"An optical system simulation and design methods for large-area divergent solar simulators were studied to achieve uniform illumination of a large irradiation area of solar simulators. First, the working principles of fly-eye lens array groups and examine divergent projection systems as well as the production mechanism of the sidelobe effect was analyzed. Subsequently, using nesting modeling combined with the polynomial fitting method, the intensity distribution curve of the xenon lamp axis was obtained. Then a luminous intensity distribution simulation of the xenon lamp was conduct based on the luminous energy symmetry of the xenon lamp. Considering the boundary conditions and parameters for the optical system designly, a beam-shaping system, a fly-eye lens array group, and a divergent projection system were designed. The experimental results show that when the working distance is 20 000 mm and the irradiation surface diameter is 1 500 mm, the irradiation uniformity is 92.8%, which meets the uniform illumination requirement for large-area divergent solar simulators."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"太阳模拟器"}],[{"name":"text","data":"均匀照明"}],[{"name":"text","data":"复眼透镜阵列"}],[{"name":"text","data":"光束整形"}],[{"name":"text","data":"氙灯建模"}]]},{"lang":"en","data":[[{"name":"text","data":"solar simulator"}],[{"name":"text","data":"uniform illumination"}],[{"name":"text","data":"fly-eye lens array"}],[{"name":"text","data":"beam shaping"}],[{"name":"text","data":"Xenon lamp modeling"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"1"}],"title":[{"name":"text","data":"引言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"太阳模拟器是一种利用人工光源在室内模拟太阳光谱分布的均匀、稳定的光辐照试验或定标设备"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。太阳模拟器不仅在卫星太空飞行姿态控制"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"2","type":"bibr","rid":"b2","data":[{"name":"text","data":"2"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"和航天器热平衡试验"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"3","type":"bibr","rid":"b3","data":[{"name":"text","data":"3"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"中有着大量应用,同时在太阳能电池的检测"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"、材料工程与环境工程等领域中的光性能试验"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"5","type":"bibr","rid":"b5","data":[{"name":"text","data":"5"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"、光环境对生物及环境的影响"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"6","type":"bibr","rid":"b6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"等方面也扮演着重要角色。"}]},{"name":"p","data":[{"name":"text","data":"由于氙灯光源功率的限制,国内外大型太阳模拟器往往通过增加光源数量来达到更高的辐射照度。但随着氙灯功率的逐渐增大,所需光源数目逐渐减少,大型太阳模拟器的结构得以简化。尽管如此,大多数大型太阳模拟器仍以离轴式光学系统为主"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"7","type":"bibr","rid":"b7","data":[{"name":"text","data":"7"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"10","type":"bibr","rid":"b10","data":[{"name":"text","data":"10"}]}}],"rid":["b7","b8","b9","b10"],"text":"7-10","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。离轴式太阳模拟器的体积及质量很大,结构较复杂,装调难度很高,制造成本极高,因此,在保证较高光学性能的同时,实现低成本、高效率、大面积、高均匀的太阳光辐照模拟是太阳模拟器研究的重点"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"11","type":"bibr","rid":"b11","data":[{"name":"text","data":"11"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"国外学者在进行氙灯光源光学系统设计时,十分重视对氙灯光源的建模仿真,但并没有透露具体的技术细节"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"12","type":"bibr","rid":"b12","data":[{"name":"text","data":"12"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。国内椭球聚光系统的设计过程中多将氙灯光源简化为点光源,仿真过程中通常根据发光功率与发光体积分布正相关的思想"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":", "},{"name":"xref","data":{"text":"13","type":"bibr","rid":"b13","data":[{"name":"text","data":"13"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"来模拟发光区域,或者利用氙灯发光功率密度最高点在阴极附近的特性将发光区域分为核心区与非核心区"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"14","type":"bibr","rid":"b14","data":[{"name":"text","data":"14"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",由此导致太阳模拟器在实际装调过程中需要进行离焦调节才能达到更高的性能指标,因此与实际发光效果匹配的光学系统设计和建模仿真也是太阳模拟器亟需解决的问题。"}]},{"name":"p","data":[{"name":"text","data":"为了模拟氙灯的实际发光效果,本文研究了氙灯建模仿真技术,并结合建模仿真结果设计大面积发散太阳模拟器光学系统,实现了太阳模拟器大辐照面积的均匀照明。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2"}],"title":[{"name":"text","data":"大面积发散太阳模拟器光学系统组成"}],"level":"1","id":"s2"}},{"name":"p","data":[{"name":"text","data":"太阳模拟器光学系统一般由氙灯、椭球聚光系统、转向平面反射镜、复眼透镜阵列组和准直/投影系统等组成。由于氙灯为体光源,经过椭球聚光系统光束的出射角度与理论设计值有所偏差,因此需要对复眼透镜阵列组与准直/投影系统进行偏差补偿。复眼透镜阵列组与准直/投影系统的工作光路如"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"text","data":"复眼透镜阵列组与准直/投影系统的工作光路"}]},{"lang":"en","label":[{"name":"text","data":"Fig 1"}],"title":[{"name":"text","data":"Light path of fly-eye lens array groups and collimation/projection system"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715576&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715576&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715576&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"由"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"可以看出,当光线入射角"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"text","data":"≤"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"时,光线在元素透镜组成的通道内完成光束传输;但当光线入射角"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"<"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"text","data":"≤"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"时,出射光线落入辐照面"},{"name":"italic","data":[{"name":"text","data":"S"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"区间内,产生旁瓣效应,降低了辐照面的均匀度,同时减少了有效辐照面内的辐射通量。其中"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"可以表示为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"1"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715590&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715590&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715590&type=middle"}}}],"id":"gxjmgc-27-3-552-E1"}}]},{"name":"p","data":[{"name":"text","data":"式中"},{"name":"italic","data":[{"name":"text","data":"D"}]},{"name":"text","data":"和"},{"name":"italic","data":[{"name":"text","data":"f"}]},{"name":"text","data":"分别为元素透镜的直径和焦距。"}]},{"name":"p","data":[{"name":"text","data":"复眼透镜阵列组的入射光束角度应小于临界入射角"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":",因此应设计光束整形系统,使复眼透镜阵列组与准直/投影系统接近理想的工作光路,从而提升太阳模拟器的辐射照度与均匀度。大面积发散太阳模拟器的光学系统组成如"},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"text","data":"大面积发散太阳模拟器的光学系统组成"}]},{"lang":"en","label":[{"name":"text","data":"Fig 2"}],"title":[{"name":"text","data":"Composition of optical system of large-area divergent solar simulator"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715601&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715601&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715601&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3"}],"title":[{"name":"text","data":"氙灯发光效果的建模仿真"}],"level":"1","id":"s3"}},{"name":"p","data":[{"name":"text","data":"太阳模拟器主要采用短弧氙灯作为光源,短弧氙灯利用高温等离子体辐射原理,即在氙灯阴极和阳极之间加上直流电压后,高频高压电激发阴极发射热电子,电子被电场加速后撞击氙原子,从而激发电离,产生强烈的弧光放电"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"15","type":"bibr","rid":"b15","data":[{"name":"text","data":"15"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。短弧氙灯的主要结构如"},{"name":"xref","data":{"text":"图 3","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure3","caption":[{"lang":"zh","label":[{"name":"text","data":"图3"}],"title":[{"name":"text","data":"短弧氙灯的主要结构"}]},{"lang":"en","label":[{"name":"text","data":"Fig 3"}],"title":[{"name":"text","data":"Structure of xenon short-arc lamp"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715613&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715613&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715613&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"由于氙灯光谱对所建模型的辐射强度以及均匀度并无影响,因此氙灯建模仿真时主要考虑轴上相对亮度分布、光源模型建立以及空间光强分布。"}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.1"}],"title":[{"name":"text","data":"轴上相对亮度分布"}],"level":"2","id":"s3-1"}},{"name":"p","data":[{"name":"text","data":"氙灯轴上电弧的亮度分布很不均匀,在氙灯阴阳极之间存在一个能量集中区域,其能量占整个氙灯能量的70%以上,氙灯电弧亮度的相对强度分布曲线"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"如"},{"name":"xref","data":{"text":"图 4","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure4","caption":[{"lang":"zh","label":[{"name":"text","data":"图4"}],"title":[{"name":"text","data":"氙灯电弧亮度的相对强度分布曲线"}]},{"lang":"en","label":[{"name":"text","data":"Fig 4"}],"title":[{"name":"text","data":"Relative intensity distribution curve of voltaic arc luminance of xenon lamp"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715626&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715626&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715626&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"由"},{"name":"xref","data":{"text":"图 4","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4"}]}},{"name":"text","data":"可知,电弧相对亮度从阴极开始迅速上升,并在离阴极0.07 "},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"sub","data":[{"name":"text","data":"are"}]},{"name":"text","data":"处("},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"sub","data":[{"name":"text","data":"are"}]},{"name":"text","data":"即为极距)达到最高,形成一个亮度极高的光斑,因此可以近似认为该处至阳极之间的亮度分布为氙灯的亮度分布,进而可以以阴极为原点,阴极与阳极的中轴线为"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":"轴,氙灯轴向亮度的相对强度为"},{"name":"italic","data":[{"name":"text","data":"y"}]},{"name":"text","data":"轴,拟合出氙灯轴向上亮度相对强度的分布曲线。选用幂函数、指数函数以及六次多项式拟合出轴向上亮度相对强度的分布曲线,分别如"},{"name":"xref","data":{"text":"图 5(a)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5(a)"}]}},{"name":"text","data":","},{"name":"xref","data":{"text":"5(b)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"5(b)"}]}},{"name":"text","data":"和"},{"name":"xref","data":{"text":"5(c)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"5(c)"}]}},{"name":"text","data":"所示,具体的曲线方程和残差平方和如"},{"name":"xref","data":{"text":"表 1","type":"table","rid":"Table1","data":[{"name":"text","data":"表 1"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure5","caption":[{"lang":"zh","label":[{"name":"text","data":"图5"}],"title":[{"name":"text","data":"轴向上亮度相对强度分布的拟合曲线"}]},{"lang":"en","label":[{"name":"text","data":"Fig 5"}],"title":[{"name":"text","data":"Fitting curves of relative luminance along xenon lamp′s axis"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715640&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715640&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715640&type=middle"}]}},{"name":"table","data":{"id":"Table1","caption":[{"lang":"zh","label":[{"name":"text","data":"表1"}],"title":[{"name":"text","data":"轴向上亮度相对强度分布曲线方程和残差平方和"}]},{"lang":"en","label":[{"name":"text","data":"Table 1"}],"title":[{"name":"text","data":"Curvilinear equation and residual sum of squares of relative luminance along xenon lamp′s axis"}]}],"note":[],"table":[{"head":[[{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"名称"}]},{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"曲线方程"}]},{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"残差"},{"name":"text","data":""},{"name":"text","data":"平方和"}]}]],"body":[[{"align":"center","style":"class:table_top_border2","data":[{"name":"text","data":"幂函数"}]},{"align":"center","style":"class:table_top_border2","data":[{"name":"italic","data":[{"name":"text","data":"y"}]},{"name":"text","data":"=1.415 16×e"},{"name":"sup","data":[{"name":"text","data":"-0.044 66"},{"name":"italic","data":[{"name":"text","data":"x"}]}]}]},{"align":"center","style":"class:table_top_border2","data":[{"name":"text","data":"0.064 7"}]}],[{"align":"center","data":[{"name":"text","data":"指数函数"}]},{"align":"center","data":[{"name":"italic","data":[{"name":"text","data":"y"}]},{"name":"text","data":"=0.047 89+1.473 8×"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"sup","data":[{"name":"text","data":"0.948 9"}]}]},{"align":"center","data":[{"name":"text","data":"0.051 6"}]}],[{"align":"center","style":"class:table_bottom_border","data":[{"name":"text","data":"六次多项式"}]},{"align":"center","style":"class:table_bottom_border","data":[{"name":"italic","data":[{"name":"text","data":"y"}]},{"name":"text","data":"=1.368-0.034 78"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":"-0.001 74"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"+ 1.06×10"},{"name":"sup","data":[{"name":"text","data":"-3"}]},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"sup","data":[{"name":"text","data":"3"}]},{"name":"text","data":"-2.082×10"},{"name":"sup","data":[{"name":"text","data":"-6"}]},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"sup","data":[{"name":"text","data":"4"}]},{"name":"text","data":"+ 1.791×10"},{"name":"sup","data":[{"name":"text","data":"-8"}]},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"sup","data":[{"name":"text","data":"5"}]},{"name":"text","data":"-5.738×10"},{"name":"sup","data":[{"name":"text","data":"-11"}]},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"sup","data":[{"name":"text","data":"6"}]}]},{"align":"center","style":"class:table_bottom_border","data":[{"name":"text","data":"0.024 9"}]}]],"foot":[]}]}},{"name":"p","data":[{"name":"text","data":"根据"},{"name":"xref","data":{"text":"表 1","type":"table","rid":"Table1","data":[{"name":"text","data":"表 1"}]}},{"name":"text","data":",本文选用拟合效果最好的六次多项式拟合结果作为氙灯轴向上亮度相对强度的分布曲线,记为"},{"name":"italic","data":[{"name":"text","data":"l"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":")。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2"}],"title":[{"name":"text","data":"光源模型建立"}],"level":"2","id":"s3-2"}},{"name":"p","data":[{"name":"text","data":"根据氙灯轴向上亮度相对强度的分布特性,采用嵌套建模的思想,结合氙灯发光能量绕阴阳极轴线旋转对称的性质,可将氙灯全部发光区域分为三个子区域,依次模拟氙灯的阴极斑、核心发光区与非核心发光,且子区域光源模型的线性尺度取该发光区域中点附近"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"16","type":"bibr","rid":"b16","data":[{"name":"text","data":"16"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。其中, 阴极斑模拟光源为圆心位于距离阴极0.07 "},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"sub","data":[{"name":"text","data":"are"}]},{"name":"text","data":"处的球体光源;核心发光区模拟光源为中心线与阴阳极轴线重合,底面圆心与阴极点重合的圆柱体光源;非核心发光区模拟光源为中心线与阴阳极轴线重合,底面圆心与阴极点重合的圆柱体光源。"}]},{"name":"p","data":[{"name":"text","data":"假设每个子光源模型的发光点均匀分布在模型表面上,那么从内到外各模拟子光源模型的发光功率面密度"},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"sub","data":[{"name":"text","data":"3"}]},{"name":"text","data":"定义为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"2"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715654&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715654&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715654&type=middle"}}}],"id":"gxjmgc-27-3-552-E2"}}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"3"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715670&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715670&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715670&type=middle"}}}],"id":"gxjmgc-27-3-552-E3"}}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"4"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715686&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715686&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715686&type=middle"}}}],"id":"gxjmgc-27-3-552-E4"}}]},{"name":"p","data":[{"name":"text","data":"式中:"},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"sub","data":[{"name":"text","data":"are"}]},{"name":"text","data":"表示氙灯极间距,且0.07"},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"sub","data":[{"name":"text","data":"are"}]},{"name":"text","data":"<"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":"<"},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"text","data":"<"},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"sub","data":[{"name":"text","data":"are"}]},{"name":"text","data":";"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"text","data":"表示距离阴极点的距离,"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":"一般取0.07 "},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"sub","data":[{"name":"text","data":"are"}]},{"name":"text","data":"+"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"text","data":"的取值为"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"~2"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":",其中"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"为阴极斑模拟子光源直径,"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"是核心发光区模拟子光源高;"},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"text","data":"表示表面亮度与发光功率面密度的比例系数,"},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"text","data":" "},{"name":"text","data":">"},{"name":"text","data":" 0,单位为W/cd。由于3个子光源相互嵌套,求解表面发光密度时需考虑多光源叠加的情况,因此可以通过增大区间长度系数进行适当补偿。"}]},{"name":"p","data":[{"name":"text","data":"已知氙灯的光功率为"},{"name":"italic","data":[{"name":"text","data":"P"}]},{"name":"text","data":",则子光源的发光功率可表示为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"5"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715699&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715699&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715699&type=middle"}}}],"id":"gxjmgc-27-3-552-E5"}}]},{"name":"p","data":[{"name":"text","data":"式中"},{"name":"italic","data":[{"name":"text","data":"A"},{"name":"sub","data":[{"name":"text","data":"i"}]}]},{"name":"text","data":"表示对应的模拟子光源模型的表面积。"}]},{"name":"p","data":[{"name":"text","data":"因此,以氙灯约70%的功率集中在阴极斑和核心区为边界条件,利用二分插值法,通过式(5)迭代求取"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"text","data":"的具体数值。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.3"}],"title":[{"name":"text","data":"空间光强分布"}],"level":"2","id":"s3-3"}},{"name":"p","data":[{"name":"text","data":"氙灯的空间光强分布是不均匀的,在横截面内各个方向上的光强相等,纵截面内各个方向上的光强不一,曲线呈蝴蝶状对称分布。由于各光源光线出射的基本形式为垂直表面,因此需要根据配光曲线来控制光源模型的发光角度。厂家提供的氙灯配光曲线、仿真模拟的配光曲线以及两种曲线对比如"},{"name":"xref","data":{"text":"图 6","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure6","caption":[{"lang":"zh","label":[{"name":"text","data":"图6"}],"title":[{"name":"text","data":"配光曲线对比"}]},{"lang":"en","label":[{"name":"text","data":"Fig 6"}],"title":[{"name":"text","data":"Comparison of light distribution curves"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715714&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715714&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715714&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"从"},{"name":"xref","data":{"text":"图 6","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6"}]}},{"name":"text","data":"可以看出, 氙灯的空间光强分布得到了较好的模拟。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4"}],"title":[{"name":"text","data":"太阳模拟器光学系统设计"}],"level":"1","id":"s4"}},{"name":"p","data":[{"name":"text","data":"由于氙灯光源结构复杂,通过数学建模难以获得较为准确的椭球镜第二焦点处光斑的直径与发散角度,因此结合氙灯建模结果,并以第一焦距为57.35 mm,第二焦距为1 319 mm,出瞳口径为301.58 mm的椭球聚光系统为例,进行太阳模拟器的光学系统设计。"}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.1"}],"title":[{"name":"text","data":"光束整形系统"}],"level":"2","id":"s4-1"}},{"name":"p","data":[{"name":"text","data":"根据"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"可知,光束整形系统的物面直径与入射角由椭球聚光系统第二焦面上光线的入射角度以及辐照面直径决定。对氙灯光源以及椭球聚光系统进行建模仿真,仿真结果如"},{"name":"xref","data":{"text":"图 7","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure7","caption":[{"lang":"zh","label":[{"name":"text","data":"图7"}],"title":[{"name":"text","data":"椭球聚光系统第二焦点处光斑仿真结果"}]},{"lang":"en","label":[{"name":"text","data":"Fig 7"}],"title":[{"name":"text","data":"Simulation result of spot on secondary focal point of ellipsoidal focusing system"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715730&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715730&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715730&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"由仿真结果可知,在第二焦点处的光斑直径为70 mm,光线入射角度为5.48°。由"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"可知,"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"=arctan("},{"name":"italic","data":[{"name":"text","data":"S"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"/2"},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"text","data":"),其中"},{"name":"italic","data":[{"name":"text","data":"S"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"为辐照面直径,等于1 500 mm,"},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"text","data":"为太阳模拟器的工作距离,等于20 000 mm,故复眼透镜阵列元素透镜的相对孔径为3:40,因此要求复眼透镜阵列组的入射光角度不大于2.14°。同时由于光束整形系统的像面直径决定着复眼透镜阵列组的直径,考虑到加工的难易程度与经济性,像面直径选为220 mm。复眼透镜阵列组前端面的入射光束张角变小,会明显改善复眼透镜阵列组的旁瓣效应,大幅提高其能量利用率,但不同视场的光束平行度较差,影响复眼透镜阵列组的匀光效果,导致工作辐照面均匀度较差,因此光束整形系统设计时应以校正影响光束平行度的像差为主。光束整形系统光路和优化后不同视场的弥散斑分别如"},{"name":"xref","data":{"text":"图 8","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8"}]}},{"name":"text","data":"和"},{"name":"xref","data":{"text":"图 9","type":"fig","rid":"Figure9","data":[{"name":"text","data":"图 9"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure8","caption":[{"lang":"zh","label":[{"name":"text","data":"图8"}],"title":[{"name":"text","data":"光束整形系统原理"}]},{"lang":"en","label":[{"name":"text","data":"Fig 8"}],"title":[{"name":"text","data":"Optical principle of beam shaping system"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715734&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715734&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715734&type=middle"}]}},{"name":"fig","data":{"id":"Figure9","caption":[{"lang":"zh","label":[{"name":"text","data":"图9"}],"title":[{"name":"text","data":"整形后不同视场的弥散斑"}]},{"lang":"en","label":[{"name":"text","data":"Fig 9"}],"title":[{"name":"text","data":"Spot diagram in different fields of view after shaping"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715749&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715749&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715749&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"系统边缘视场弥散斑的RMS半径为22.94 "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"m,中心视场形成的弥散斑RMS半径为20.131 "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"m,优化后的光束出射角小于1.7°,光束平行度优于0.06°。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.2"}],"title":[{"name":"text","data":"复眼透镜阵列组与发散投影系统"}],"level":"2","id":"s4-2"}},{"name":"p","data":[{"name":"text","data":"根据复眼透镜阵列组的边缘补偿原理"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"17","type":"bibr","rid":"b17","data":[{"name":"text","data":"17"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",并考虑太阳模拟器辐照面为圆形,复眼透镜阵列选用正六边形的元素透镜"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"18","type":"bibr","rid":"b18","data":[{"name":"text","data":"18"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。虽然元素透镜阵列的通道数量与均匀度呈正相关关系,但是由于光学像差的存在,过多的通道数目没有实际意义"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"19","type":"bibr","rid":"b19","data":[{"name":"text","data":"19"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。因此,本文复眼透镜阵列的通道数选为19,在复眼透镜阵列组边缘加入等腰三角形小透镜,以起到补偿边缘辐射照度的作用。复眼透镜阵列的排布及补偿方式如"},{"name":"xref","data":{"text":"图 10","type":"fig","rid":"Figure10","data":[{"name":"text","data":"图 10"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure10","caption":[{"lang":"zh","label":[{"name":"text","data":"图10"}],"title":[{"name":"text","data":"复眼透镜阵列边缘补偿"}]},{"lang":"en","label":[{"name":"text","data":"Fig 10"}],"title":[{"name":"text","data":"Edge compensation of fly-eye lens array"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715765&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715765&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715765&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"复眼透镜阵列元素透镜的内接圆直径"},{"name":"italic","data":[{"name":"text","data":"D"}]},{"name":"text","data":"= "},{"name":"inlineformula","data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715857&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715857&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715857&type=middle"}}}]},{"name":"text","data":", 其中"},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"text","data":"为复眼透镜阵列组的通光口径,"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"text","data":"为复眼透镜阵列内接圆直径包含的元素透镜数量。根据光束整形系统的设计结果,复眼透镜阵列组的直径应稍大于220 mm,为了便于元素透镜加工,将复眼透镜阵列组的通光口径选为225 mm,相对孔径与发散投影系统匹配,同时发散投影系统焦距为20 000 mm,辐照面直径为1 500 mm。由于本文设计的太阳模拟器为发散式太阳模拟器,复眼透镜阵列组中投影镜组为发散投影系统入瞳,因此可以将复眼透镜阵列组中的投影镜组与发散投影系统胶合,以缩短光路,便于装调。复眼透镜阵列组与发散投影系统的光学参数如"},{"name":"xref","data":{"text":"表 3","type":"table","rid":"Table3","data":[{"name":"text","data":"表 3"}]}},{"name":"text","data":"所示。"}]},{"name":"table","data":{"id":"Table3","caption":[{"lang":"zh","label":[{"name":"text","data":"表3"}],"title":[{"name":"text","data":"复眼透镜阵列组与发散投影系统的光学参数"}]},{"lang":"en","label":[{"name":"text","data":"Table 3"}],"title":[{"name":"text","data":"Optical parameters of fly-eye lens array groups and divergent projection system"}]}],"note":[],"table":[{"head":[[{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"名称"}]},{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"光学参数"}]}]],"body":[[{"align":"center","style":"class:table_top_border2","data":[{"name":"text","data":"元素透镜直径"}]},{"align":"center","style":"class:table_top_border2","data":[{"name":"text","data":"45 mm"}]}],[{"align":"center","data":[{"name":"text","data":"元素透镜相对孔径"}]},{"align":"center","data":[{"name":"text","data":"3:40"}]}],[{"align":"center","data":[{"name":"text","data":"元素透镜数量"}]},{"align":"center","data":[{"name":"text","data":"19"}]}],[{"align":"center","data":[{"name":"text","data":"发散投影系统直径"}]},{"align":"center","data":[{"name":"text","data":"225 mm"}]}],[{"align":"center","data":[{"name":"text","data":"发散投影系统焦距"}]},{"align":"center","data":[{"name":"text","data":"20 000 mm"}]}],[{"align":"center","style":"class:table_bottom_border","data":[{"name":"text","data":"辐照面直径"}]},{"align":"center","style":"class:table_bottom_border","data":[{"name":"text","data":"1 500 mm"}]}]],"foot":[]}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.3"}],"title":[{"name":"text","data":"仿真分析与实验验证"}],"level":"2","id":"s4-3"}},{"name":"p","data":[{"name":"text","data":"根据上述设计结果,利用Lighttools对氙灯、椭球聚光系统、光束整形系统、复眼透镜阵列组与发散投影系统进行建模仿真,结果如"},{"name":"xref","data":{"text":"图 11","type":"fig","rid":"Figure11","data":[{"name":"text","data":"图 11"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure11","caption":[{"lang":"zh","label":[{"name":"text","data":"图11"}],"title":[{"name":"text","data":"太阳模拟器光学系统的建模及仿真"}]},{"lang":"en","label":[{"name":"text","data":"Fig 11"}],"title":[{"name":"text","data":"Modeling and simulation of optical system of solar simulator"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715780&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715780&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715780&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"加工装调完成后的大面积发散太阳模拟器主体如"},{"name":"xref","data":{"text":"图 12","type":"fig","rid":"Figure12","data":[{"name":"text","data":"图 12"}]}},{"name":"text","data":"所示。基于环形等角采样法,利用辐射照度计在半径为750 mm的圆形内,按旋转角度间隔45°和环带半径间隔30 mm进行采样测试,归一化后辐照面上仿真结果与实验辐射照度的一维分布如"},{"name":"xref","data":{"text":"图 13","type":"fig","rid":"Figure13","data":[{"name":"text","data":"图 13"}]}},{"name":"text","data":"所示,实验辐射照度测试数据如"},{"name":"xref","data":{"text":"表 2","type":"table","rid":"Table2","data":[{"name":"text","data":"表 2"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure12","caption":[{"lang":"zh","label":[{"name":"text","data":"图12"}],"title":[{"name":"text","data":"大面积发散太阳模拟器主体"}]},{"lang":"en","label":[{"name":"text","data":"Fig 12"}],"title":[{"name":"text","data":"Main body of large-area divergent solar simulator"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715798&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715798&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715798&type=middle"}]}},{"name":"fig","data":{"id":"Figure13","caption":[{"lang":"zh","label":[{"name":"text","data":"图13"}],"title":[{"name":"text","data":"归一化辐照面上仿真与实验辐射照度的一维分布"}]},{"lang":"en","label":[{"name":"text","data":"Fig 13"}],"title":[{"name":"text","data":"One-dimensional distribution of normalized simulation and experimental results on irradiation surface"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715819&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715819&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715819&type=middle"}]}},{"name":"table","data":{"id":"Table2","caption":[{"lang":"zh","label":[{"name":"text","data":"表2"}],"title":[{"name":"text","data":"辐射照度的测试数据"}]},{"lang":"en","label":[{"name":"text","data":"Table 2"}],"title":[{"name":"text","data":"Experimental data result of irradiance"}]}],"note":[],"beforegraphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715835&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715835&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715835&type=middle"}],"table":[]}},{"name":"p","data":[{"name":"text","data":"太阳模拟器辐照面均匀度的计算公式可以表示为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"6"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715846&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715846&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1715846&type=middle"}}}],"id":"gxjmgc-27-3-552-E6"}}]},{"name":"p","data":[{"name":"text","data":"故大面积发散太阳模拟器的工作距离为20 000 mm,辐照面直径为1 500 mm,辐照均匀度的仿真结果为94.1%,实验结果为92.8%,实验数据与仿真结果基本吻合。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"5"}],"title":[{"name":"text","data":"结论"}],"level":"1","id":"s5"}},{"name":"p","data":[{"name":"text","data":"本文结合太阳模拟器的实际发光效果以及大辐照面积均匀照明的需求,分析了复眼透镜阵列组与发散投影系统的工作原理以及旁瓣效应的产生机理,提出了增加光束整形系统的太阳模拟器光学系统;拟合了短弧氙灯轴上相对亮度的分布曲线并建立了光源模型,实现了氙灯发光效果的模拟;设计了光束整形系统、复眼透镜阵列组与发散投影系统,并进行了仿真分析与试验验证。结果表明,大面积发散太阳模拟器的工作距离为20 000 mm,辐照面直径为1 500 mm,辐照均匀度为92.8%,满足均匀照明的需求。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"b1","label":"1","citation":[{"lang":"zh","text":[{"name":"text","data":"刘石.高精度准直式太阳模拟器及其关键技术研究[D].长春: 长春理工大学, 2014."}]},{"lang":"en","text":[{"name":"text","data":"LIU SH. "},{"name":"italic","data":[{"name":"text","data":"Study on Key Technique of Collimation Solar Simulator with High-Precision"}]},{"name":"text","data":"[D]. Changchun: Changchun University of Science and Technology, 2014. (in Chinese)"}]}]},{"id":"b2","label":"2","citation":[{"lang":"zh","text":[{"name":"text","data":"白光耀, 王昊, 王志远, 等.面向微小卫星的全视场数字太阳敏感器设计[J].传感技术学报, 2016, 29(2):232-236."}]},{"lang":"en","text":[{"name":"text","data":"BAI G Y, WANG H, WANG ZH Y, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Design of digital sun sensor with panoramic field for micro-satellite[J]."},{"name":"italic","data":[{"name":"text","data":"Chinese Journal of Sensors and Actuators"}]},{"name":"text","data":", 2016, 29(2):232-236. (in Chinese)"}]}]},{"id":"b3","label":"3","citation":[{"lang":"zh","text":[{"name":"text","data":"刘金龙, 郄殿福, 裴一飞, 等.使用太阳模拟器进行热平衡试验的附加外热流影响分析[J].航天器环境工程, 2015, 32(2):182-186."}]},{"lang":"en","text":[{"name":"text","data":"LIU J L, XI D F, PEI Y F, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Analysis of additional heat flux by using solar simulator in thermal balance test[J]."},{"name":"italic","data":[{"name":"text","data":"Spacecraft Environment Engineering"}]},{"name":"text","data":", 2015, 32(2):182-186. (in Chinese)"}]}]},{"id":"b4","label":"4","citation":[{"lang":"zh","text":[{"name":"text","data":"王敏.环境因素对平板型太阳能集热器热性能的影响研究[D].北京: 清华大学, 2016."}]},{"lang":"en","text":[{"name":"text","data":"WANG M. "},{"name":"italic","data":[{"name":"text","data":"Effect of Environmental Factors on Thermal Performance of Flat Plate Solar Collector"}]},{"name":"text","data":"[D]. Beijing: Tsinghua University, 2016. (in Chinese)"}]}]},{"id":"b5","label":"5","citation":[{"lang":"zh","text":[{"name":"text","data":"叶金晶, 周健, 卞洁玉, 等.晶硅太阳电池原位光老化及热致输运机理[J].光子学报, 2016, 45(9):105-110."}]},{"lang":"en","text":[{"name":"text","data":"YE J J, ZHOU J, BIAN J Y, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Light soaking in situ and thermally induced transport mechanism of crystalline silicon solar cell[J]."},{"name":"italic","data":[{"name":"text","data":"Acta Photonica Sinica"}]},{"name":"text","data":", 2016, 45(9):105-110. (in Chinese)"}]}]},{"id":"b6","label":"6","citation":[{"lang":"zh","text":[{"name":"text","data":"严广寒, 刘德富, 张佳磊, 等.不同光照条件对浮游植物生物量与多样性的影响[J].水生态学杂志, 2018, 39(1):37-43."}]},{"lang":"en","text":[{"name":"text","data":"YAN G H, LIU D F, ZHANF J L, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Effects of illumination intensity on phytoplankton community biomass and diversity[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Hydroecology"}]},{"name":"text","data":", 2018, 39(1):37-43. (in Chinese)"}]}]},{"id":"b7","label":"7","citation":[{"lang":"en","text":[{"name":"text","data":"EDDY R. Design and construction of the JPL SS15B solar simulator[C]."},{"name":"italic","data":[{"name":"text","data":"Third Space Simulation Conference"}]},{"name":"text","data":", 1968: 22-35."}]}]},{"id":"b8","label":"8","citation":[{"lang":"en","text":[{"name":"text","data":"POWELL I. New concept for a system suitable for solar simulation.[J]."},{"name":"italic","data":[{"name":"text","data":"Appl. Opt"}]},{"name":"text","data":"., 1980, 19(2):329-334."}]}]},{"id":"b9","label":"9","citation":[{"lang":"zh","text":[{"name":"text","data":"黄本诚. KM4大型空间环境摸拟设备[J].真空科学与技术学报, 1988(6):33-39."}]},{"lang":"en","text":[{"name":"text","data":"HUANG B CH. The large space simulation environmental facility-KM4[J]."},{"name":"italic","data":[{"name":"text","data":"Chinese Journal of Vacuum Science and Technology"}]},{"name":"text","data":", 1988(6):33-39. (in Chinese)"}]}]},{"id":"b10","label":"10","citation":[{"lang":"zh","text":[{"name":"text","data":"庞贺伟, 黄本诚, 臧友竹, 等. KM6太阳模拟器设计概述[J].航天器环境工程, 2006, 23(3):125-133."}]},{"lang":"en","text":[{"name":"text","data":"PANG H W, HUANG B CH, ZANG Y ZH, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Design of KM6 solar simulator[J]."},{"name":"italic","data":[{"name":"text","data":"Spacecraft Environment Engineering"}]},{"name":"text","data":", 2006, 23(3):125-133. (in Chinese)"}]}]},{"id":"b11","label":"11","citation":[{"lang":"zh","text":[{"name":"text","data":"付明.大型发散式太阳模拟器光学系统设计[D].长春: 长春理工大学, 2014."}]},{"lang":"en","text":[{"name":"text","data":"FU M. "},{"name":"italic","data":[{"name":"text","data":"The Design of Large Solar Simulator Divergent Optical System"}]},{"name":"text","data":"[D]. Changchun: Changchun University of Science and Technology, 2014. (in Chinese)"}]}]},{"id":"b12","label":"12","citation":[{"lang":"en","text":[{"name":"text","data":"ULMER S, REINALTER W, HELLER P, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Beam characterization and improvement with a flux mapping system for dish concentrators[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Solar Energy Engineering"}]},{"name":"text","data":", 2002(2002):182-188."}]}]},{"id":"b13","label":"13","citation":[{"lang":"zh","text":[{"name":"text","data":"向艳红, 张容, 黄本诚. KFTA太阳模拟器辐照均匀性仿真[J].航天器环境工程, 2006, 23(5):288-292."}]},{"lang":"en","text":[{"name":"text","data":"XIANG Y H, ZHANG R, HUANG B CH. Irradiation uniformity simulation of KFTA solar simulator[J]."},{"name":"italic","data":[{"name":"text","data":"Spacecraft Environment Engineering"}]},{"name":"text","data":", 2006, 23(5):288-292. (in Chinese)"}]}]},{"id":"b14","label":"14","citation":[{"lang":"zh","text":[{"name":"text","data":"宋培宇.高准直高辐照度太阳模拟器的设计与仿真分析[D].哈尔滨: 哈尔滨工业大学, 2017."}]},{"lang":"en","text":[{"name":"text","data":"SONG P Y. "},{"name":"italic","data":[{"name":"text","data":"Design and Simulation Analysis of Solar Simulator with High Collimation and High Irradiance"}]},{"name":"text","data":"[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)"}]}]},{"id":"b15","label":"15","citation":[{"lang":"zh","text":[{"name":"text","data":"杨颐鸥.用于太阳模拟器的大功率长弧氙灯内触发新技术研究[D].上海: 上海交通大学, 2014."}]},{"lang":"en","text":[{"name":"text","data":"YANG Y O. "},{"name":"italic","data":[{"name":"text","data":"Study on New Internal Trigger Technology of the Long Arc Xenon Lamp for High-Power Solar Simulator"}]},{"name":"text","data":"[D]. Shanghai: Shanghai Jiao Tong University, 2014. (in Chinese)"}]}]},{"id":"b16","label":"16","citation":[{"lang":"zh","text":[{"name":"text","data":"朱新新, 王辉, 刘洪波, 等.弧光灯热流标定系统光源的仿真设计[J].光学学报, 2016(4):246-252."}]},{"lang":"en","text":[{"name":"text","data":"ZHU X X, WANG H, LIU H B, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Simulation design of the arc lamp system for heat flux sensor calibration[J]."},{"name":"italic","data":[{"name":"text","data":"Acta Optica Sinica"}]},{"name":"text","data":", 2016(4):246-252. (in Chinese)"}]}]},{"id":"b17","label":"17","citation":[{"lang":"zh","text":[{"name":"text","data":"仲跻功.提高光学复眼透镜阵列组均匀化效果的有关问题[J].光学 精密工程, 1983(5):28-32."}]},{"lang":"en","text":[{"name":"text","data":"ZHONG J G. Problems related to improving the uniformity of optical integrator[J]."},{"name":"italic","data":[{"name":"text","data":"Opt. Precision Eng."}]},{"name":"text","data":", 1983(5):28-32. (in Chinese)"}]}]},{"id":"b18","label":"18","citation":[{"lang":"zh","text":[{"name":"text","data":"吕涛, 付东辉, 陈小云, 等.光学复眼透镜阵列组的元素透镜数量和形状对太阳模拟器均匀性的影响[J].光电子·激光, 2014(10):1849-1853."}]},{"lang":"en","text":[{"name":"text","data":"LV T, FU D H, CHEN X Y, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Effect of optical intergrator element lenses' number and shape on the lighting uniformity of solar simulator[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Optoelectronics·Laser"}]},{"name":"text","data":", 2014(10):1849-1853. (in Chinese)"}]}]},{"id":"b19","label":"19","citation":[{"lang":"zh","text":[{"name":"text","data":"杜温钖, 李福田, 周秀良.均匀照明和照度分布计算[J].光学 精密工程, 1978(4):1-6."}]},{"lang":"en","text":[{"name":"text","data":"DU W Y, LI F T, ZHOU X L. The calculation of uniform illumination and illumination distribution[J]."},{"name":"italic","data":[{"name":"text","data":"Opt. Precision Eng."}]},{"name":"text","data":", 1978(4):1-6. (in Chinese)"}]}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.3788/OPE.20192703.0552","clc":[[{"name":"text","data":"TH765.8; V524.2"}]],"dc":[],"publisherid":"gxjmgc-27-3-552","citeme":[],"fundinggroup":[{"lang":"zh","text":[{"name":"text","data":"国家自然科学基金资助项目(No.61603061);吉林省科技厅科技发展项目(No.20150520093JH)"}]}],"history":{"received":"2018-11-02","accepted":"2018-12-12","ppub":"2019-03-15","opub":"2020-06-16"},"copyright":{"data":[{"lang":"zh","data":[{"name":"text","data":"版权所有©《光学 精密工程》编辑部2019"}],"type":"copyright"},{"lang":"en","data":[{"name":"text","data":"Copyright ©2019 Optics and Precision Engineering. All rights reserved."}],"type":"copyright"}],"year":"2019"}},"appendix":[],"type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"光学 精密工程","issue":"3","volume":"27","originalSource":[]}