{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"静电驱动MOEMS保险机构的设计与试验"}]},{"lang":"en","data":[{"name":"text","data":"Design and test of electrostatic driving MOEMS arming device"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"刘","givenname":"加凯","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LIU","givenname":"Jia-kai","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff2","text":"2"}],"role":["corresp","first-author"],"corresp":[{"rid":"cor1","lang":"en","text":"LIU Jia-kai, E-mail: liujiakai1129@163.com","data":[{"name":"text","data":"LIU Jia-kai, E-mail: liujiakai1129@163.com"}]}],"bio":[{"lang":"zh","text":["刘加凯(1985-),男,河南辉县人,博士,讲师,2013年于军械工程学院获得博士学位,主要从事引信微机电系统、智能弹药技术的研究。Email:liujiakai1129@163.com"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"刘加凯"}]},{"name":"text","data":"(1985-),男,河南辉县人,博士,讲师,2013年于军械工程学院获得博士学位,主要从事引信微机电系统、智能弹药技术的研究。Email:"},{"name":"text","data":"liujiakai1129@163.com"}]]}],"email":"liujiakai1129@163.com","deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"1","text":"西安交通大学 机械工程学院,陕西 西安 710049","data":[{"name":"text","data":"西安交通大学 机械工程学院,陕西 西安 710049"}]},{"lang":"en","label":"1","text":"School of Mechanical, Xi′an Jiaotong University, Xi′an 710049, China","data":[{"name":"text","data":"School of Mechanical, Xi′an Jiaotong University, Xi′an 710049, China"}]}]},{"id":"aff2","intro":[{"lang":"zh","label":"2","text":"武警工程大学 装备管理与保障学院,陕西 西安 710086","data":[{"name":"text","data":"武警工程大学 装备管理与保障学院,陕西 西安 710086"}]},{"lang":"en","label":"2","text":"School of Management and Assurance, University of Armed Police Engineering, Xi′an 710086, China","data":[{"name":"text","data":"School of Management and Assurance, University of Armed Police Engineering, Xi′an 710086, China"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"为了提高引信状态控制的安全性,增强其抵抗引信内、外强电磁干扰的能力,提出了一种应用于微小型引信安全系统的硅基微光机电保险机构。该机构采用光纤作为过程能量传输的载体,通过静电驱动方式实现对光纤光路错位与对准的控制,达到引信安全与解除保险的目的。设计了MOEMS保险机构的总体结构和耦合光路,并对它进行SOI+DRIE工艺设计和加工。通过开展静电微驱动器性能测试试验和光路性能测试试验得出,静电微驱动器能够实现130 μm的大位移输出,MOEMS保险机构的解除保险时间和恢复保险时间分别为13 ms和5 ms,光能传输效率为46.1%。所设计的MOEMS保险机构能够满足功能要求,具备天然的抗电磁干扰能力,有效提高了引信的本征安全性。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"To improve the state control safety of a fuze and enhance its ability to resist electromagnetic interference, this paper proposes a silicon-based Micro-Opto-Electro-Mechanical Systems (MOEMS) arming device used in the miniature safety and arming system of a fuze. The device adopts two optical fibers as the carriers of energy transmission, and their misalignment and alignment are controlled through an electrostatic driving mechanism, which determines the safety and arming state of the fuze. The overall structure and coupled optical path of the MOEMS arming device are designed, and subsequently, it is manufactured through a silicon-on-insulator deep reactive-ion etching process. Through experiments evaluating the performances of the electrostatic driving mechanism and optical path, it is concluded that the displacement output of the electrostatic driving mechanism can reach 130 μm, the arming time and restore safety time are 13 ms and 5 ms, respectively, and the light energy transfer efficiency is 46.1%. The MOEMS arming device can satisfy the functional requirements of a fuze and it can have natural resistance to electromagnetic interference, which improves the intrinsic safety of the fuze."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"微光机电系统"}],[{"name":"text","data":"引信"}],[{"name":"text","data":"保险机构"}],[{"name":"text","data":"静电微驱动器"}],[{"name":"text","data":"光路耦合"}]]},{"lang":"en","data":[[{"name":"text","data":"Micro-Opto-Electro-Mechanical System(MOEMS)"}],[{"name":"text","data":"fuze"}],[{"name":"text","data":"arming device"}],[{"name":"text","data":"micro electrostatic driving mechanism"}],[{"name":"text","data":"optical path coupled"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"1"}],"title":[{"name":"text","data":"引言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"引信被誉为弹药的“大脑”,其保险机构用于确保弹药在勤务处理和使用过程中的安全,并在预定条件下解除保险,使弹药处于待发火状态,是保证弹药安全性的核心部件"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"2","type":"bibr","rid":"b2","data":[{"name":"text","data":"2"}]}}],"rid":["b1","b2"],"text":"1-2","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。随着弹药武器系统的发展,对引信技术提出了更高的要求,如微小型化、智能化和灵巧化等,这使得电子逻辑器件和电路被大量应用于引信保险机构中"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"3","type":"bibr","rid":"b3","data":[{"name":"text","data":"3"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"8","type":"bibr","rid":"b8","data":[{"name":"text","data":"8"}]}}],"rid":["b3","b4","b5","b6","b7","b8"],"text":"3-8","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。然而,由于引信内部电子元器件产生的电磁脉冲以及外部静电、闪电、射频及高空电磁脉冲大量存在,这些电磁脉冲经电引线耦合引入电子保险机构内部,可能导致保险机构中的逻辑控制元件发生误动作或失效,从而严重影响引信的安全性,造成严重后果"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"10","type":"bibr","rid":"b10","data":[{"name":"text","data":"10"}]}}],"rid":["b9","b10"],"text":"9-10","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"为了提高引信状态控制的安全性,增强其抵抗引信内、外强电磁干扰的能力,本文提出了一种应用于微小型引信安全系统的硅基微光机电(Micro-Opto-Electro-Mechanical System,MOEMS)保险机构。该机构采用光纤作为过程能量传输的载体,通过静电驱动方式实现对光纤光路错位与对准(“断”与“通”)的控制,达到引信安全与解除保险的目的。由于光纤能量信号的传输形式与其他的能量信号不兼容,电磁环境与含能材料彻底实现了隔离,可以有效降低甚至消除这些因素对引信安全性的威胁,使保险机构具有本征安全性。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2"}],"title":[{"name":"text","data":"MOEMS保险结构设计"}],"level":"1","id":"s2"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.1"}],"title":[{"name":"text","data":"总体结构设计"}],"level":"2","id":"s2-1"}},{"name":"p","data":[{"name":"text","data":"本文基于微光机电一体化设计思想,所设计的MOEMS保险机构主要由驱动机构和隔离机构组成。该MOEMS保险机构由同一块基板加工而成,如"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"所示。驱动机构是MOEMS保险机构的功能执行核心,采用梳齿式静电微驱动器。其结构包括:供电电极、可动梳齿电极、固定梳齿电极、弹性支撑机构、锚、限位槽、限位销、可动电极导接线和固定电极导接线。其中,弹性支撑机构又包括桁弹性梁和梭,用于支撑驱动器的可动梳齿电极和平面微反射镜,使两者在平时或工作过程中均处于悬置状态,同时提供了系统恢复安全状态所需的弹性回复力。限位槽与限位销的配合限制了静电微驱动器在"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":"方向与"},{"name":"italic","data":[{"name":"text","data":"y"}]},{"name":"text","data":"方向的位移,防止因振动、冲击或外部驱动电压过高而导致的可动梳齿电极与固定梳齿电极的碰撞、搭接现象。隔离机构主要包括平面微反射镜、能量输入光纤、能量输出光纤和光纤定位槽。本文采用外置式弹性支撑机构、预弯曲弹性梁和对称式线性可动梳齿电极结构,能够有效提高静电驱动机构在大位移驱动条件下的驱动稳定性。为减小静电驱动机构在大位移直线输出的条件下产生较大的结构应力,本文采用较长的预弯曲弹性梁结构,其长度为2 500 μm。"}]},{"name":"fig","data":{"id":"Figure1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"text","data":"反射式MOEMS保险结构"}]},{"lang":"en","label":[{"name":"text","data":"Fig 1"}],"title":[{"name":"text","data":"Structure of reflective MOEMS safety device"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716128&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716128&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716128&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"MOEMS保险机构采用双光纤反射式光路控制方式,能量输入光纤和能量输出光纤相互垂直,平面微反射镜呈45°倾角,当平面微反射镜中心位于两光纤光路交点位置时,能量输出光纤的反射光路与能量输出光纤光路对准,光路导通,MOEMS保险机构处于解除保险状态;否则,处于安全状态。静电微驱动器通过驱动平面微反射镜进入(+"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":"方向)或退出(-"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":"方向)系统光路,进而控制两光纤光路的错位与对准,实现对引信安全与解除保险状态的控制。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.2"}],"title":[{"name":"text","data":"耦合光路设计"}],"level":"2","id":"s2-2"}},{"name":"p","data":[{"name":"text","data":"反射式MOEMS保险机构的耦合光路结构如"},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"所示。由于多模光纤输出激光光束存在一定的发散角"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"text","data":",光斑直径在自由空间中随光束传输距离的增大而增大。当两光纤芯径相同时,能量输入光纤的光束经平面微反射镜反射后必然有一部分光束无法入射到能量输出光纤中,造成能量损失。为了提高系统的光能传输效率,本文采用光纤变径耦合技术,使能量输入光纤的芯径小于能量输出光纤。但入射光纤的芯径也不是越小越好,光纤芯径越小,对激光器与光纤的耦合技术要求就越高。基于目前的技术水平,本文采用的能量输入、输出光纤芯径分别为50 μm和105 μm,其包层直径均为125 μm。多模光纤包层直径的公差为±3 μm,同时考虑工艺误差,确定光纤定位槽宽度为129 μm。假设光纤轴线处于光纤槽中心,光纤端面定位结构的宽度为7 μm,则光能传输路径长度为"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":"="},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"text","data":"=71.5 μm,此时经平面微反射镜反射后光斑的最大有效直径为"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"text","data":"=82.2 μm("},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"text","data":"=12.7°),该值小于能量输出光纤的芯径值105 μm,即光纤光路对准后,能量输入光纤光束能够完全进入能量输出光纤。同时为了保证入射光束能够完全反射至能量输出光纤,要求微反射镜具有较大的反射面积。根据"},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"所示的反射式MOEMS保险光路结构,本文设计的镜面高度为120 μm。"}]},{"name":"fig","data":{"id":"Figure2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"text","data":"反射式MOEMS保险光路结构"}]},{"lang":"en","label":[{"name":"text","data":"Fig 2"}],"title":[{"name":"text","data":"Light path of reflective MOEMS safety device"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716135&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716135&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716135&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"由于平面微反射镜镜面较大,为了保证平面微反射镜能够完全进入或退出系统光能传输路径,实现反射式MOEMS保险机构在错位时的高隔离度和对准时的低插入损耗,要求静电微驱动器能够实现大驱动位移输出。根据入射光斑和出射光斑的最大有效直径,同时为了避免发生衍射效应,在考虑加工工艺特点的基础上,确定平面微反射镜的位移量为130 μm,即要求静电微驱动器必须具备130 μm的直线位移输出能力。"}]},{"name":"p","data":[{"name":"text","data":"当静电驱动器实现130 μm的输出能力时,单根弹性梁末端在"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":"向的偏移量为65 μm。由于梳齿微驱动器的弹性梁为固定-导向梁结构,采用三角函数对其"},{"name":"italic","data":[{"name":"text","data":"y"}]},{"name":"text","data":"向结构位移进行近似计算,可得梳齿在"},{"name":"italic","data":[{"name":"text","data":"y"}]},{"name":"text","data":"向的最大位移约为0.13 μm。由于梳齿交叠时梳齿间隙为2 μm,因此不会引起梳齿间的搭接现象。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3"}],"title":[{"name":"text","data":"MOEMS保险机构的工艺制备"}],"level":"1","id":"s3"}},{"name":"p","data":[{"name":"text","data":"静电驱动MOEMS保险机构的结构较为复杂,其静电微驱动器、平面微反射镜均为可动悬空结构。同时MOEMS保险机构的电学特性要求也较高,静电微驱动器交叠后梳齿间隙仅为2 μm,因此加工工艺会造成梳齿表面边角的凹凸起伏等。在较高的驱动电压作用下,由于梳齿电容局部电场集中,可能引起梳齿驱动结构突发失稳,造成机械卡锁、甚至短路或击穿放电烧毁等现象,导致MOEMS保险机构失效。因此静电驱动MOEMS保险机构对加工工艺提出了较高的要求。本文采用SOI(Silicon-on-Insulator)工艺和深反应离子蚀刻(Deep Reactive Ion Etching,DRIE)工艺相结合的方法,进行系统的一体化工艺设计和制备。采用SOI工艺能够实现较厚悬空可动结构的加工,满足静电微驱动器、平面微反射镜对厚度的要求,同时DRIE工艺能够实现较高精度的硅基MOEMS结构的加工。"}]},{"name":"p","data":[{"name":"text","data":"在MOEMS保险机构的制备过程中,由于平面微反射镜的特征尺寸远大于其他组件的结构尺寸,为了减小微反射镜衬底的释放时间,在其衬底上制备有工艺孔,用于加快衬底结构底部氧化层的刻蚀。静电梳齿驱动器的弹性梁具有结构尺寸长、宽度小的特点,为了保证弹性梁在结构释放过程中刻蚀速率均匀,防止过刻蚀导致弹性梁刻断等现象,在弹性梁两侧设计有鳞片保护结构,如"},{"name":"xref","data":{"text":"图 3","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3"}]}},{"name":"text","data":"所示。反射式MOEMS保险的关键加工工艺流程如"},{"name":"xref","data":{"text":"图 4","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure3","caption":[{"lang":"zh","label":[{"name":"text","data":"图3"}],"title":[{"name":"text","data":"弹性梁鳞片保护结构"}]},{"lang":"en","label":[{"name":"text","data":"Fig 3"}],"title":[{"name":"text","data":"Structure of scalelike safeguard"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716146&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716146&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716146&type=middle"}]}},{"name":"fig","data":{"id":"Figure4","caption":[{"lang":"zh","label":[{"name":"text","data":"图4"}],"title":[{"name":"text","data":"静电驱动MOEMS保险工艺流程"}]},{"lang":"en","label":[{"name":"text","data":"Fig 4"}],"title":[{"name":"text","data":"Process of electrostatic driven MOEMS safety device"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716154&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716154&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716154&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"静电驱动MOEMS保险机构的电镜扫描图如"},{"name":"xref","data":{"text":"图 5","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5"}]}},{"name":"text","data":"所示。从图中可以得出:(1)静电驱动MOEMS保险机构具有良好的结构完整性;(2)驱动器的弹性支撑机构具有足够的刚度支撑驱动器悬置结构及微反射镜,与器件基底之间均未发生黏附现象,静电驱动MOEMS保险具有较高的工艺制备质量。"}]},{"name":"fig","data":{"id":"Figure5","caption":[{"lang":"zh","label":[{"name":"text","data":"图5"}],"title":[{"name":"text","data":"静电驱动MOEMS保险关键结构(电镜扫描图)"}]},{"lang":"en","label":[{"name":"text","data":"Fig 5"}],"title":[{"name":"text","data":"SEM image of key part of electrostatic driven MOEMS safety device"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716161&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716161&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716161&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"本文采用磁控溅射工艺进行MOEMS保险机构中平面微反射镜的镜面镀膜,镜面镀膜材料为Cr和Au,镀膜厚度分别为30 nm和200 nm。镀膜过程分为两部分:辉光放电和连续撞击,由此所得的微反射镜镜面镀膜与基片结合性较好,并且具有高纯度、高致密性等优势"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"11","type":"bibr","rid":"b11","data":[{"name":"text","data":"11"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4"}],"title":[{"name":"text","data":"静电驱动MOEMS保险机构试验"}],"level":"1","id":"s4"}},{"name":"p","data":[{"name":"text","data":"静电驱动MOEMS保险机构功能实现的关键在于静电微驱动器性能和光路性能。"}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.1"}],"title":[{"name":"text","data":"静电微驱动器性能测试试验"}],"level":"2","id":"s4-1"}},{"name":"p","data":[{"name":"text","data":"通过对静电微驱动器的输出位移进行仿真和试验测试,得出其输出位移随驱动电压的变化关系,如"},{"name":"xref","data":{"text":"图 6","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6"}]}},{"name":"text","data":"所示。由"},{"name":"xref","data":{"text":"图 6","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6"}]}},{"name":"text","data":"可知,采用对称式线性交叠梳齿结构的静电微驱动器能够实现预定位移的输出,位移输出量为130 μm时,所需的实际驱动电压为22.67 V,高于理论分析值约6.4%。其原因主要有两个方面:(1)一般情况下,梳齿驱动器的工艺制备过程中存在一定程度的过刻蚀现象,即工艺误差导致驱动器的实际梳齿间隙大于理论设计值,造成驱动器在工作过程中所需的驱动电压增大;(2)静电驱动机构的限位槽与限位销之间存在摩擦力,导致在相同位移输出条件下,驱动器需要更大的驱动力,从而造成驱动器实际所需的驱动电压增大。理论分析与试验测试结果均证明:在较低驱动电压条件下,静电微驱动器基本无位移输出,而当驱动电压接近所需最大驱动电压时,驱动器位移输出急剧增大,此时很小的驱动电压变化将导致较大的位移输出改变,驱动电压控制的精度及稳定性要求较高。之所以出现该现象,是由于梳齿式静电驱动器的可动梳齿电极采用对称式线性梳齿结构,而非传统的平行梳齿结构。在初始位置,可动梳齿与固定梳齿交叠量很少,在较低的驱动电压下,驱动力很小,不足以克服弹性梁的弹性力,因此无位移输出。随着电压的增大,驱动力逐渐增大,当能够克服弹性梁的弹性力时,才有位移输出,并使得梳齿交叠量增加;随着电压的进一步增大,输出位移增大,梳齿交叠量增加,驱动力呈指数关系增大,使得位移随驱动电压呈指数关系进一步增大,驱动位移与驱动电压具有明显的非线性特性。"}]},{"name":"fig","data":{"id":"Figure6","caption":[{"lang":"zh","label":[{"name":"text","data":"图6"}],"title":[{"name":"text","data":"静电驱动器位移随驱动电压的变化关系"}]},{"lang":"en","label":[{"name":"text","data":"Fig 6"}],"title":[{"name":"text","data":"Displacement of electrostatic actuator "},{"name":"italic","data":[{"name":"text","data":"vs."}]},{"name":"text","data":" driving voltage"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716171&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716171&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716171&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"根据静电微驱动器的位移输出随驱动电压的变化趋势可以得出,静电驱动MOEMS保险机构的状态控制应采用精度较高的直流稳压源,电压输出控制精度应小于0.01 V;同时也证明了在静电驱动MOEMS保险机构中进行驱动器限位机构设计的必要性,不仅提高了静电驱动MOEMS保险机构的抗振动、冲击能力,还能够防止静电微驱动器在驱动电压过大或驱动电压控制精度较低时出现可动梳齿电极与固定梳齿电极的碰撞接触现象,避免驱动器短路烧毁失效。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.2"}],"title":[{"name":"text","data":"光路性能测试试验"}],"level":"2","id":"s4-2"}},{"name":"p","data":[{"name":"text","data":"静电驱动MOEMS保险机构的光路通断响应时间即静电微驱动器的动态响应时间,反映的是MOEMS保险机构的解除保险与恢复保险时间。在试验过程中,给能量输出光纤输入激光信号("},{"name":"italic","data":[{"name":"text","data":"P"}]},{"name":"sub","data":[{"name":"text","data":"in"}]},{"name":"text","data":"=2 W,"},{"name":"italic","data":[{"name":"text","data":"λ"}]},{"name":"text","data":"=808 nm),并在静电驱动MOEMS保险机构加载峰值为22.67 V的矩形脉冲信号,MOEMS保险解除后,激光信号经反射进入能量输出光纤,通过光功率计测试输出的光功率。静电驱动MOEMS保险机构的解除保险状态如"},{"name":"xref","data":{"text":"图 7","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7"}]}},{"name":"text","data":"所示,所测试到的光路性能如"},{"name":"xref","data":{"text":"图 8","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8"}]}},{"name":"text","data":"所示。通过分析MOEMS保险机构输出的光功率信号与静电驱动器的驱动信号之间的时间差,可以得出静电驱动MOEMS保险机构的光路通断响应时间,这里得到光路导通响应时间约为13 ms,光路关断的响应时间约为5 ms。"}]},{"name":"fig","data":{"id":"Figure7","caption":[{"lang":"zh","label":[{"name":"text","data":"图7"}],"title":[{"name":"text","data":"反射式MOEMS保险机构的解除保险状态"}]},{"lang":"en","label":[{"name":"text","data":"Fig 7"}],"title":[{"name":"text","data":"Reflective MOEMS safety device in arming state"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716181&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716181&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716181&type=middle"}]}},{"name":"fig","data":{"id":"Figure8","caption":[{"lang":"zh","label":[{"name":"text","data":"图8"}],"title":[{"name":"text","data":"静电驱动MOEMS保险机构的光路性能"}]},{"lang":"en","label":[{"name":"text","data":"Fig 8"}],"title":[{"name":"text","data":"Optical performance of electrostatic driven MOEMS safety device"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716190&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716190&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716190&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"静电驱动MOEMS保险机构的光能传输效率、安全状态时的光隔离度和解除保险时的插入损耗可通过式(1)和式(2)进行计算"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"12","type":"bibr","rid":"b12","data":[{"name":"text","data":"12"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"13","type":"bibr","rid":"b13","data":[{"name":"text","data":"13"}]}}],"rid":["b12","b13"],"text":"12-13","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"光能传输效率为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"1"}],"data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716198&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716198&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716198&type=middle"}}}],"id":"gxjmgc-27-2-334-E1"}}]},{"name":"p","data":[{"name":"text","data":"光隔离度和插入损耗为:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"2"}],"data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716210&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716210&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1716210&type=middle"}}}],"id":"gxjmgc-27-2-334-E2"}}]},{"name":"p","data":[{"name":"text","data":"其中:"},{"name":"italic","data":[{"name":"text","data":"P"}]},{"name":"sub","data":[{"name":"text","data":"out"}]},{"name":"text","data":"为试验样机输出的激光功率;"},{"name":"italic","data":[{"name":"text","data":"P"}]},{"name":"sub","data":[{"name":"text","data":"in"}]},{"name":"text","data":"为输入的激光功率。"}]},{"name":"p","data":[{"name":"text","data":"经测试和计算得出,MOEMS保险机构的主要技术参数如"},{"name":"xref","data":{"text":"表 1","type":"table","rid":"Table1","data":[{"name":"text","data":"表 1"}]}},{"name":"text","data":"所示。"}]},{"name":"table","data":{"id":"Table1","caption":[{"lang":"zh","label":[{"name":"text","data":"表1"}],"title":[{"name":"text","data":"静电驱动MOEMS保险机构的主要技术参数"}]},{"lang":"en","label":[{"name":"text","data":"Table 1"}],"title":[{"name":"text","data":"Main technical parameters of electrostatic driven MOEMS safety device"}]}],"note":[],"table":[{"head":[[{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"性能指标"}]},{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"参数"}]}]],"body":[[{"align":"center","style":"class:table_top_border2","data":[{"name":"text","data":"光能传输效率/%"}]},{"align":"center","style":"class:table_top_border2","data":[{"name":"text","data":"46.1"}]}],[{"align":"center","data":[{"name":"text","data":"电热驱动器驱动位移/μm"}]},{"align":"center","data":[{"name":"text","data":"130"}]}],[{"align":"center","data":[{"name":"text","data":"驱动电压/V"}]},{"align":"center","data":[{"name":"text","data":"22.67"}]}],[{"align":"center","data":[{"name":"text","data":"解除保险时间/ms"}]},{"align":"center","data":[{"name":"text","data":"13"}]}],[{"align":"center","data":[{"name":"text","data":"恢复保险时间/ms"}]},{"align":"center","data":[{"name":"text","data":"5"}]}],[{"align":"center","data":[{"name":"text","data":"安全状态时光隔离度/dB"}]},{"align":"center","data":[{"name":"text","data":"33"}]}],[{"align":"center","data":[{"name":"text","data":"解除保险时插入损耗/dB"}]},{"align":"center","data":[{"name":"text","data":"3.4"}]}],[{"align":"center","style":"class:table_bottom_border","data":[{"name":"text","data":"芯片尺寸/(mm×mm×mm)"}]},{"align":"center","style":"class:table_bottom_border","data":[{"name":"text","data":"6×6×1"}]}]],"foot":[]}]}},{"name":"p","data":[{"name":"text","data":"由"},{"name":"xref","data":{"text":"表 1","type":"table","rid":"Table1","data":[{"name":"text","data":"表 1"}]}},{"name":"text","data":"可知,反射式MOEMS保险机构的光能传输效率为46.1%,相较于直接耦合式光路的传输效率偏低。这是由于在反射式MOEMS保险机构中,除了光纤对准偏差和光纤端面菲涅耳反射会造成光能损耗外,微反射镜的镜面粗糙度和垂直度对光能传输效率的影响也较大。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"5"}],"title":[{"name":"text","data":"结论"}],"level":"1","id":"s5"}},{"name":"p","data":[{"name":"text","data":"本文提出一种基于静电驱动的硅基MOEMS保险机构,对MOEMS保险机构的总体结构和耦合光路结构进行了设计,并采用SOI+DRIE工艺对该保险机构进行了工艺设计和加工。通过静电微驱动器性能测试试验和光路性能测试试验得出,当驱动电压为22.67 V时,静电微驱动器能够实现130 μm的大位移输出,MOEMS保险机构的解除保险时间和恢复保险时间分别为13 ms和5 ms,光能传输效率为46.1%,安全状态时的光隔离度和解除保险时的插入损耗分别为33 dB和3.4 dB。由此可见,所设计的静电驱动MOEMS保险机构能够满足引信的功能要求,具有天然的抗电磁干扰能力,提高了引信的本征安全性。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"b1","label":"1","citation":[{"lang":"zh","text":[{"name":"text","data":"张合.弹药发展对引信技术的需求与推动[J].兵器装备工程学报, 2018(3): 1-5."}]},{"lang":"en","text":[{"name":"text","data":"ZHANG H.Development of ammunition for the demand and promotion of fuze technology[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Ordnance Equipment Engineering"}]},{"name":"text","data":", 2018(3): 1-5. (in Chinese)"}]}]},{"id":"b2","label":"2","citation":[{"lang":"zh","text":[{"name":"text","data":"步超, 聂伟荣, 徐安达, 等.基于柔性止动的MEMS惯性开关冲击可靠性强化[J].光学 精密工程, 2017, 25(1): 123-132."}]},{"lang":"en","text":[{"name":"text","data":"BU CH, NIE W R, XU A D, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Shock reliability enhancement by flexible stop for MEMS inertial switch[J]."},{"name":"italic","data":[{"name":"text","data":"Opt. Precision Eng."}]},{"name":"text","data":", 2017, 25(3): 123-132. (in Chinese)"}]}]},{"id":"b3","label":"3","citation":[{"lang":"zh","text":[{"name":"text","data":"刘民哲, 王泰升, 李和福, 等.静电场辅助的微压印光刻技术[J].光学 精密工程, 2017, 25(3): 663-671."}]},{"lang":"en","text":[{"name":"text","data":"LIU M ZH, WANG T SH, LI H F, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Electrostatic field assisted micro imprint lithography technology[J]."},{"name":"italic","data":[{"name":"text","data":"Opt. Precision Eng."}]},{"name":"text","data":", 2017, 25(3): 663-671. (in Chinese)"}]}]},{"id":"b4","label":"4","citation":[{"lang":"zh","text":[{"name":"text","data":"范卫民, 刘双杰, 王丽爽, 等. MEMS加速度计在防空导弹引信中的应用[J].兵器装备工程学报, 2018(3): 75-82."}]},{"lang":"en","text":[{"name":"text","data":"FAN W M, LIU SH J, WANG L SH, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":"..Application of MEMS accelerometer in antiaircraft missile fuze[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Ordnance Equipment Engineering"}]},{"name":"text","data":", 2018(3): 75-82. (in Chinese)"}]}]},{"id":"b5","label":"5","citation":[{"lang":"zh","text":[{"name":"text","data":"马宝华.现代引信的控制功能及特征[J].探测与控制学报, 2008, 30(1): 1-5."}]},{"lang":"en","text":[{"name":"text","data":"MA B H. Control function and characteristics of modern fuzes[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Detection & Control"}]},{"name":"text","data":", 2008, 30(1): 1-5. (in Chinese)"}]}]},{"id":"b6","label":"6","citation":[{"lang":"zh","text":[{"name":"text","data":"黄德雨, 张世林.一种新型深水炸弹引信解除保险机构设计[J].兵器装备工程学报, 2017(1): 47-50."}]},{"lang":"en","text":[{"name":"text","data":"HUANG D Y, ZHANG SH L. Design of new type of depth bomb fuze arming mechanism[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Ordnance Equipment Engineering"}]},{"name":"text","data":", 2017(1): 47-50. (in Chinese)"}]}]},{"id":"b7","label":"7","citation":[{"lang":"en","text":[{"name":"text","data":"DEFENSE TECHNICAL INFORMATION CENTER. OSD RDT"},{"name":"text","data":"&"},{"name":"text","data":"E project justification (R2a exhibit)[EB/OL]."},{"name":"extlink","data":{"text":[{"name":"text","data":"http://www.ditc.mil/descriptivesum/Y2012/OSD/0603225D8Z.pdf"}],"href":"http://www.ditc.mil/descriptivesum/Y2012/OSD/0603225D8Z.pdf"}},{"name":"text","data":", 2012.02."}]}]},{"id":"b8","label":"8","citation":[{"lang":"en","text":[{"name":"text","data":"MCENTIRE R S, BUTLER P. Fuzing "},{"name":"text","data":"&"},{"name":"text","data":" firing systems at sandia national laboratories[C]. "},{"name":"italic","data":[{"name":"text","data":"NDIA's 58rd Annual Fuze Conference"}]},{"name":"text","data":", 2014."}]}]},{"id":"b9","label":"9","citation":[{"lang":"en","text":[{"name":"text","data":"JOHN D H. Evolving requirements for the use of logic devices in the implementation of safety features or an update to the DoD Fuze Engineering Standardization Working Group's (FESWG) technical manual for the use of logic devices in safety features[C]"},{"name":"text","data":"."},{"name":"italic","data":[{"name":"text","data":"55th Annua1 Fuze Conference"}]},{"name":"text","data":", 2011."}]}]},{"id":"b10","label":"10","citation":[{"lang":"en","text":[{"name":"text","data":"BEAMESDERFER M, CHEN S P, DEVOE D, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Analysis of an optical energy interrupter for MEMS based safety and arming systems[J]."},{"name":"italic","data":[{"name":"text","data":"SPIE"}]},{"name":"text","data":", 1999, 3880: 101-111."}]}]},{"id":"b11","label":"11","citation":[{"lang":"zh","text":[{"name":"text","data":"单体强.基于MOEMS的引信电子安全系统状态控制技术研究[D].石家庄: 军械工程学院, 2016."}]},{"lang":"en","text":[{"name":"text","data":"SHAN T Q. "},{"name":"italic","data":[{"name":"text","data":"Research on the State Control Technology of Fuze Electronic Safety System Based on MOEMS"}]},{"name":"text","data":" [D]. Shijiazhuang: Ordance Engineering College, 2016. (in Chinese)"}]}]},{"id":"b12","label":"12","citation":[{"lang":"en","text":[{"name":"text","data":"BLAIR P, MCMILLAN D, PODLECKI J, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. MEMS hybridisation-bridging the free-space gap[J]."},{"name":"italic","data":[{"name":"text","data":"SPIE"}]},{"name":"text","data":", 2001, 4407: 193-201."}]}]},{"id":"b13","label":"13","citation":[{"lang":"en","text":[{"name":"text","data":"TI Q SH, XING L Q. Analysis and design of a high power laser interrupter for MEMS based safety and arming systems[J]."},{"name":"italic","data":[{"name":"text","data":"Microsystem Technologies"}]},{"name":"text","data":", 2016, 26: 382-401."}]}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.3788/OPE.20192702.0334","clc":[[{"name":"text","data":"TJ430.2;TN253"}]],"dc":[],"publisherid":"gxjmgc-27-2-334","citeme":[],"fundinggroup":[{"lang":"zh","text":[{"name":"text","data":"国家博士后基金资助项目(No.2017M623155);陕西省自然科学基础研究计划资助项目(No.2018JQ5024)"}]}],"history":{"received":"2018-09-12","accepted":"2018-10-23","ppub":"2019-02-15","opub":"2020-06-16"},"copyright":{"data":[{"lang":"zh","data":[{"name":"text","data":"版权所有©《光学 精密工程》编辑部2019"}],"type":"copyright"},{"lang":"en","data":[{"name":"text","data":"Copyright ©2019 Optics and Precision Engineering. All rights reserved."}],"type":"copyright"}],"year":"2019"}},"appendix":[],"type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"光学 精密工程","issue":"2","volume":"27","originalSource":[]}