{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"高性能电加热玻璃3D打印与微转印复合制造工艺"}]},{"lang":"en","data":[{"name":"text","data":"Three-dimensional printing and micro-transfer composite manufacturing process for high performance glass heaters"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"杨","givenname":"建军","namestyle":"eastern","prefix":""},{"lang":"en","surname":"YANG","givenname":"Jian-jun","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":["first-author"],"bio":[{"lang":"zh","text":["杨建军(1977-),男,河北保定人,博士,副教授,硕士生导师,2006年于东北石油大学获得博士学位,主要从事3D打印、系统工程优化等方面的研究。E-mail: yjjdem@163.com"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"杨建军"}]},{"name":"text","data":"(1977-),男,河北保定人,博士,副教授,硕士生导师,2006年于东北石油大学获得博士学位,主要从事3D打印、系统工程优化等方面的研究。E-mail: "},{"name":"text","data":"yjjdem@163.com"}]]}],"email":"yjjdem@163.com","deceased":false},{"name":[{"lang":"zh","surname":"李","givenname":"红珂","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LI","givenname":"Hong-ke","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":["corresp"],"corresp":[{"rid":"cor1","lang":"zh","text":"李红珂(1992-),男,山东临沂人,硕士研究生,主要从事3D打印与微纳制造方面的研究。E-mail: LHK1164072308@163.com","data":[{"name":"text","data":"李红珂(1992-),男,山东临沂人,硕士研究生,主要从事3D打印与微纳制造方面的研究。E-mail: LHK1164072308@163.com"}]}],"email":"LHK1164072308@163.com","deceased":false},{"name":[{"lang":"zh","surname":"朱","givenname":"晓阳","namestyle":"eastern","prefix":""},{"lang":"en","surname":"ZHU","givenname":"Xiao-yang","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":["corresp"],"corresp":[{"rid":"cor2","lang":"zh","text":"朱晓阳(1988-),男,山东临沂人,博士,硕士生导师,2016年于南京理工大学获得博士学位,主要从事电场驱动喷射沉积3D打印、喷墨打印、光电子器件的制造等方面的研究。E-mail: zhuxy1026@163.com ZHU Xiao-yang, E-mail: zhuxy1026@163.com","data":[{"name":"text","data":"朱晓阳(1988-),男,山东临沂人,博士,硕士生导师,2016年于南京理工大学获得博士学位,主要从事电场驱动喷射沉积3D打印、喷墨打印、光电子器件的制造等方面的研究。E-mail: zhuxy1026@163.com ZHU Xiao-yang, E-mail: zhuxy1026@163.com"}]}],"email":"zhuxy1026@163.com","deceased":false},{"name":[{"lang":"zh","surname":"许","givenname":"权","namestyle":"eastern","prefix":""},{"lang":"en","surname":"XU","givenname":"Quan","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"王","givenname":"飞","namestyle":"eastern","prefix":""},{"lang":"en","surname":"WANG","givenname":"Fei","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"兰","givenname":"红波","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LAN","givenname":"Hong-bo","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"1","text":"青岛理工大学 山东省增材制造工程技术研究中心,山东 青岛 266520","data":[{"name":"text","data":"青岛理工大学 山东省增材制造工程技术研究中心,山东 青岛 266520"}]},{"lang":"en","label":"1","text":"Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China","data":[{"name":"text","data":"Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China"}]}]},{"id":"aff2","intro":[{"lang":"zh","label":"2","text":"青岛理工大学 机械与汽车工程学院,山东 青岛 266520","data":[{"name":"text","data":"青岛理工大学 机械与汽车工程学院,山东 青岛 266520"}]},{"lang":"en","label":"2","text":"School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China","data":[{"name":"text","data":"School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"为了解决透明电加热玻璃制造技术难以兼顾电加热玻璃加热线的透光率、导电性以及附着力的问题,开发了一种可低成本、批量化实现高性能电加热玻璃制造的复合工艺。该工艺采用电场驱动熔融喷射沉积(Electric-field-driven Fusion Deposition,EFD)3D打印和UV辅助微转印复合制造透明电加热玻璃。根据复合制造工艺原理,选择及配制了EFD 3D打印、UV辅助微转印介质以及加热线材料。通过具体实验揭示了主要工艺参数对制造透明电加热玻璃加热线结构参数的影响以及规律,并确定了复合制造工艺的最佳工艺窗口。依据最优工艺参数实现了有效图案化面积为60 mm×70 mm,线宽为15 μm,高宽比为0.7,周期为1 000 μm,透光率为88%,方阻为0.5 Ω/sq,附着力为4B级,加热线为线栅结构的透明电加热玻璃制造。实验结果表明:利用EFD 3D打印和UV辅助微转印复合工艺制造的透明电加热玻璃具有透光率高、方阻低及附着力高等优势。该复合工艺为实现低成本、高性能的电加热玻璃的批量化制造提供了全新的解决方案。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"In order to produce transparent glass heaters with high light transmittance, conductivity, and adhesion of the heating wire, a novel method that combines the advantages of electric-field-driven melt-jet-deposition 3D printing technology and UV-assisted micro-transfer technology was developed. This method can enable the low-cost, batch-based manufacture of high-performance glass heaters. First, the material for 3D printing, media for the UV-assisted micro-transfer and material for the heating wire were selected and formulated as needed for the composite manufacturing process. Then, the influence of the main process parameters on the geometric structure of the transparent glass heating wire was experimentally established, and the optimum process window for the composite manufacturing process was determined. Finally, the optimum process parameters were utilized to successfully fabricate a transparent glass heater featuring a heating wire with a striped structure. The fabricated glass heater has an effective patterned area of 60 mm×70 mm, a line width of 15 μm, an aspect ratio of 0.7, a period of 1 000 μm, a transmittance of 88%, a square resistance of 0.5 Ω/sq, and an adhesion between the heating wire and glass of 4B. The experimental results indicate that the transparent glass heater printed using the presented method has a high light transmittance, low square resistance, and high adhesion. This method provides a new solution for the mass production of low-cost, high-performance glass heaters."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"透明加热玻璃"}],[{"name":"text","data":"复合制造"}],[{"name":"text","data":"电场驱动熔融喷射沉积3D打印"}],[{"name":"text","data":"UV辅助微转印"}]]},{"lang":"en","data":[[{"name":"text","data":"transparent glass heater"}],[{"name":"text","data":"composite manufacturing"}],[{"name":"text","data":"electric-field-driven-melt-jet deposition 3D printing"}],[{"name":"text","data":"UV-assisted micro-transfer"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"1"}],"title":[{"name":"text","data":"引言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"透明电加热器是利用透明导电材料通电后的焦耳效应而发热的一种电加热元件,在二次世界大战期间,透明电加热材料首次被应用于飞机挡风玻璃的除霜及抗冰"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。目前,透明电加热器已被广泛应用于汽车、广告牌、交通信号灯、智能窗、航空航天电子设备等各种民用及军事设备上,以实现除雾、除霜及抗冰的作用"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"2","type":"bibr","rid":"b2","data":[{"name":"text","data":"2"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"6","type":"bibr","rid":"b6","data":[{"name":"text","data":"6"}]}}],"rid":["b2","b3","b4","b5","b6"],"text":"2-6","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。现阶段,工业上应用最成熟的透明导电材料为铟锡氧化物(Indium Tin Oxide,ITO),然而,由于ITO中的铟是稀有金属,且有一定的毒性,ITO在制造和高温处理过程中存在易破碎和易损伤基底等问题,限制了其进一步的应用和发展"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"7","type":"bibr","rid":"b7","data":[{"name":"text","data":"7"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"10","type":"bibr","rid":"b10","data":[{"name":"text","data":"10"}]}}],"rid":["b7","b8","b9","b10"],"text":"7-10","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。近年来,随着新材料的开发及应用,多种有望替代ITO的透明导电材料陆续产生,主要有导电高分子聚合物薄膜(如PEDOT:PSS)"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"11","type":"bibr","rid":"b11","data":[{"name":"text","data":"11"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"13","type":"bibr","rid":"b13","data":[{"name":"text","data":"13"}]}}],"rid":["b11","b12","b13"],"text":"11-13","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"、碳纳米管或石墨烯"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"14","type":"bibr","rid":"b14","data":[{"name":"text","data":"14"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"16","type":"bibr","rid":"b16","data":[{"name":"text","data":"16"}]}}],"rid":["b14","b15","b16"],"text":"14-16","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"、金属纳米线"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"17","type":"bibr","rid":"b17","data":[{"name":"text","data":"17"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"18","type":"bibr","rid":"b18","data":[{"name":"text","data":"18"}]}}],"rid":["b17","b18"],"text":"17-18","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"和金属(如金、银、铜)网格"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"19","type":"bibr","rid":"b19","data":[{"name":"text","data":"19"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"20","type":"bibr","rid":"b20","data":[{"name":"text","data":"20"}]}}],"rid":["b19","b20"],"text":"19-20","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"等。然而,由于导电材料的透光性和导电性往往是矛盾的,目前透明导电材料皆存在着难以兼顾透光率和导电性的问题。在这些新的透明导电材料中,银纳米线与银网格在综合光电性能方面更为突出,被认为是最有潜力的下一代透明导电材料。"}]},{"name":"p","data":[{"name":"text","data":"近年来,银纳米线和银网格得到了广泛的研究。然而,银纳米线存在着250 ℃以上热稳定性差,沉积的纳米线网络表面粗糙度以及纳米线网络与基底的附着力较差等问题"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"21","type":"bibr","rid":"b21","data":[{"name":"text","data":"21"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"24","type":"bibr","rid":"b24","data":[{"name":"text","data":"24"}]}}],"rid":["b21","b22","b23","b24"],"text":"21-24","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":";而银网格相对银纳米线具有较好的热稳定性、表面粗糙度以及附着力。在众多银网格的制造技术中,纳米压印、光学光刻存在制造成本高、难以实现大面积制造的问题"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"25","type":"bibr","rid":"b25","data":[{"name":"text","data":"25"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"28","type":"bibr","rid":"b28","data":[{"name":"text","data":"28"}]}}],"rid":["b25","b26","b27","b28"],"text":"25-28","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":";喷墨打印、气溶胶喷射、电流体动力喷印则难以实现大高宽比银网格的制造"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"29","type":"bibr","rid":"b29","data":[{"name":"text","data":"29"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"31","type":"bibr","rid":"b31","data":[{"name":"text","data":"31"}]}}],"rid":["b29","b30","b31"],"text":"29-31","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。因此,银纳米线和银网格难以应用于光电性能、力学性能以及功耗要求均较高的透明电加热玻璃领域,这极大地阻碍了透明电加热玻璃的继续应用和推广。"}]},{"name":"p","data":[{"name":"text","data":"目前,工业上采用丝网印刷工艺、镀膜工艺以及夹丝工艺制造透明电加热玻璃。丝网印刷工艺印刷的银导线线宽较粗,影响透光率;镀膜工艺存在着导电薄膜导电性能差(发热功率低)、制作成本高以及制备工艺复杂等缺点;夹丝工艺是将超细的金属丝布放在双层玻璃的夹层,可提高电加热玻璃的透光性,但金属丝的生产成本高,并且需要采用特殊工艺将金属丝排布在夹层玻璃中,工艺较为复杂"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"32","type":"bibr","rid":"b32","data":[{"name":"text","data":"32"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"34","type":"bibr","rid":"b34","data":[{"name":"text","data":"34"}]}}],"rid":["b32","b33","b34"],"text":"32-34","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。银网格相对其它电加热材料更适用于透明电加热玻璃,而采用银网格难以实现高性能电加热玻璃制造的原因在于现有制造技术难以实现厚膜浆料(含玻璃粉,银含量高)的高分辨率、大高宽比加热线制造。高分辨率能够保证加热线的透光率,大高宽比、高银含量能够保证加热线的导电性,玻璃粉能够保证与玻璃基底的附着力。本文从透明电加热玻璃的制造技术入手,提出采用电场驱动熔融喷射沉积(Electric-field-driven Fusion Deposition,EFD)3D打印和UV辅助微转印技术相结合的方法,利用EFD 3D打印技术低成本制造大面积、大高宽比、高分辨率微尺度模具的优势,结合UV辅助微转印技术实现大高宽比微结构的有效转印。同时,通过具体实验案例揭示了主要工艺参数对转印加热线结构质量和完整性的影响及规律,并验证了所制造的透明电加热玻璃的综合性能可以满足工业化应用需求,为实现低成本、高性能的电加热玻璃的批量化制造提供了全新的解决方案。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2"}],"title":[{"name":"text","data":"基本工艺原理与流程"}],"level":"1","id":"s2"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.1"}],"title":[{"name":"text","data":"工艺方法原理"}],"level":"2","id":"s2-1"}},{"name":"p","data":[{"name":"text","data":"本文所提出的高性能电加热玻璃制造新工艺可实现具有高分辨率(小于20 μm)、大高宽比(大于0.5)及高附着力加热线的电加热玻璃制造,该复合工艺的基本原理如"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"所示。首先,根据所需透明电加热玻璃加热线的几何结构,采用EFD 3D打印出大高宽比、高分辨率的母版模具,将抽真空处理后的液态PDMS材料均匀涂铺/浇铸(涂铺厚度为0.5~1 mm)到母版模具上,并在真空条件下加热固化,固化结束后,采用“揭开式”脱模方式,将固化后的PDMS与母版进行脱模,得到PDMS工作模具,如"},{"name":"xref","data":{"text":"图 1(a)","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1(a)"}]}},{"name":"text","data":"所示。然后,通过刮涂工艺,将导电银浆填充到PDMS工作模具的凹槽中,并置于热板(100 ℃)加热固化10 min,使凹槽中银浆预固化,如"},{"name":"xref","data":{"text":"图 1(b)","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1(b)"}]}},{"name":"text","data":"所示。接着,采用UV辅助微转印工艺将PDMS工作模具内的银导线转印到目标衬底/基底上,如"},{"name":"xref","data":{"text":"图 1(c)","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1(c)"}]}},{"name":"text","data":"所示。最后,采用“揭开式”脱模方式,将PDMS工作模具与转移到目标衬底上的银线结构相互分离,通过高温烧结后处理,气化微转印介质及提高银导线的导电性,如"},{"name":"xref","data":{"text":"图 1(d)","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1(d)"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"text","data":"高性能电加热玻璃复合制造工艺流程图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 1"}],"title":[{"name":"text","data":"Process flow-chart of composite manufacture of high-performance glass heaters"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717891&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717891&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717891&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.2"}],"title":[{"name":"text","data":"电场驱动熔融喷射沉积3D打印"}],"level":"2","id":"s2-2"}},{"name":"p","data":[{"name":"text","data":"本文提出采用电场驱动熔融喷射沉积EFD 3D打印技术制造大尺寸无拼接微纳尺度母版的全新解决方案,它具有成本低和效率高的显著特点,并具有高分辨率、大高宽比、8英寸以上大面积无拼接微纳尺度母版的一次性制造的独特优势。"},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"为EFD 3D打印原理图。它不同于传统的熔融沉积成形工艺,高分辨率EFD 3D打印是一种基于自激发静电场驱动的热熔融喷射沉积微纳尺度3D打印成形技术"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"35","type":"bibr","rid":"b35","data":[{"name":"text","data":"35"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"38","type":"bibr","rid":"b38","data":[{"name":"text","data":"38"}]}}],"rid":["b35","b36","b37","b38"],"text":"35-38","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。其基本工作原理是打印喷头连接电源的正极,当带有正电的打印喷头靠近打印衬底时,喷嘴与打印衬底发生静电感应作用,二者之间形成稳定的电场。在压力控制阀的作用下,储料桶内形成背压,驱动喷嘴内的熔融材料流至喷头出口处形成微熔滴。微熔滴在电场力、黏性力及表面张力等的综合作用下被拉伸变形逐渐形成泰勒锥,当电场力大于微熔滴的表面张力后,带电液体将从泰勒锥的顶端喷射形成极细的射流,协同工作台的移动,锥射流将在基板上精准沉积,实现复杂结构的高精度制造。"}]},{"name":"fig","data":{"id":"Figure2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"text","data":"EFD 3D打印原理图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 2"}],"title":[{"name":"text","data":"Schematic diagram of EFD 3D printing"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717895&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717895&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717895&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.3"}],"title":[{"name":"text","data":"UV辅助微转印"}],"level":"2","id":"s2-3"}},{"name":"p","data":[{"name":"text","data":"UV辅助微转印技术是本文所提出的一种适用于大高宽比微结构的新型转印方法,其基本原理为利用UV固化膜与固化导电材料以及基底之间的黏附力进行图形的转印。在进行微纳特征结构转印的过程中,通常采用柔性PDMS软模具作为工作模具,PDMS工作模具与固化导电材料之间的黏附力要小于固化导电材料与转移介质间的作用力,才能确保固化导电材料能从PDMS工作模具凹槽内部转移到目标基底上。由于固化后的PDMS具有低表面能特性,UV转印介质与预固化导电银浆之间的黏附力、以及UV转印介质与玻璃衬底之间的黏附力一般远大于PDMS工作模具与预固化导电银浆及PDMS工作模具与UV转印介质之间的黏附力,如"},{"name":"xref","data":{"text":"图 3","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3"}]}},{"name":"text","data":"所示。此外,PDMS工作模具(填充有导电银浆)压印UV转印介质的过程中,采用“渐进式”顺序线接触施压的方式可以有效避免气泡等缺陷的产生,同时由于黏合层的存在,PDMS工作模具与基底之间可形成良好的完全共形接触,确保实现完整的转印"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"39","type":"bibr","rid":"b39","data":[{"name":"text","data":"39"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"40","type":"bibr","rid":"b40","data":[{"name":"text","data":"40"}]}}],"rid":["b39","b40"],"text":"39-40","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。UV辅助微转印后需进行烧结后处理,从而去除固化的UV转印介质。"}]},{"name":"fig","data":{"id":"Figure3","caption":[{"lang":"zh","label":[{"name":"text","data":"图3"}],"title":[{"name":"text","data":"UV辅助微转印原理示意图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 3"}],"title":[{"name":"text","data":"Schematic diagram of UV assisted micro-transfer printing"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717898&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717898&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717898&type=middle"}]}}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3"}],"title":[{"name":"text","data":"实验研究与工艺优化"}],"level":"1","id":"s3"}},{"name":"p","data":[{"name":"text","data":"影响EFD 3D打印和UV辅助微转印制造透明电加热玻璃的因素众多,如打印母版基底温度、刮涂工艺参数、银浆预固化温度及UV固化膜分解温度等,本文通过实验揭示主要工艺参数对所制造透明电加热玻璃的影响及规律,并得出最佳的工艺参数。"}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.1"}],"title":[{"name":"text","data":"实验装置及材料"}],"level":"2","id":"s3-1"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.1.1"}],"title":[{"name":"text","data":"3D打印实验装置"}],"level":"3","id":"s3-1-1"}},{"name":"p","data":[{"name":"text","data":"本文搭建的EFD 3D打印实验系统如"},{"name":"xref","data":{"text":"图 4","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4"}]}},{"name":"text","data":"所示,打印母板模具所用材料为聚甲基丙烯酸酯(PMMA),其熔融温度为200 ℃,打印衬底选用普通玻璃,厚度为4 mm。"}]},{"name":"fig","data":{"id":"Figure4","caption":[{"lang":"zh","label":[{"name":"text","data":"图4"}],"title":[{"name":"text","data":"EFD 3D打印实验系统"}]},{"lang":"en","label":[{"name":"text","data":"Fig 4"}],"title":[{"name":"text","data":"Photo of EFD 3D printing experimental system"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717902&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717902&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717902&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.1.2"}],"title":[{"name":"text","data":"固化导电材料的选取"}],"level":"3","id":"s3-1-2"}},{"name":"p","data":[{"name":"text","data":"本实验采用普通玻璃作为转印银线的载体,考虑到工艺过程中需要高温去除转印介质(UV油墨),因此选用市售含玻璃粉高温烧结型银浆作为固化导电材料,如"},{"name":"xref","data":{"text":"图 5","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5"}]}},{"name":"text","data":"所示。其中,玻璃粉在高温烧结过程中与玻璃结合,能够大大提高银导线与玻璃载体的黏附力,导电银浆材料的性能如"},{"name":"xref","data":{"text":"表 1","type":"table","rid":"Table1","data":[{"name":"text","data":"表 1"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure5","caption":[{"lang":"zh","label":[{"name":"text","data":"图5"}],"title":[{"name":"text","data":"高温烧结型银浆"}]},{"lang":"en","label":[{"name":"text","data":"Fig 5"}],"title":[{"name":"text","data":"High temperature sintered silver paste"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717906&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717906&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717906&type=middle"}]}},{"name":"table","data":{"id":"Table1","caption":[{"lang":"zh","label":[{"name":"text","data":"表1"}],"title":[{"name":"text","data":"导电银浆的性能参数"}]},{"lang":"en","label":[{"name":"text","data":"Table 1"}],"title":[{"name":"text","data":"Performance parameters of conductive silver paste"}]}],"note":[],"table":[{"head":[[{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"材料"}]},{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"黏度/(Pa·s)"},{"name":"text","data":""},{"name":"text","data":"(25 ℃)"}]},{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"银含量/%"}]},{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"烧结"},{"name":"text","data":""},{"name":"text","data":"温度/℃"}]},{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"浆料方阻/"},{"name":"text","data":""},{"name":"text","data":"(mΩ·sq"},{"name":"sup","data":[{"name":"text","data":"-1"}]},{"name":"text","data":")"}]}]],"body":[[{"align":"center","style":"class:table_top_border2 table_bottom_border","data":[{"name":"text","data":"银浆"}]},{"align":"center","style":"class:table_top_border2 table_bottom_border","data":[{"name":"text","data":"40~60"}]},{"align":"center","style":"class:table_top_border2 table_bottom_border","data":[{"name":"text","data":"80"}]},{"align":"center","style":"class:table_top_border2 table_bottom_border","data":[{"name":"text","data":"650~720"}]},{"align":"center","style":"class:table_top_border2 table_bottom_border","data":[{"name":"text","data":"3"}]}]],"foot":[]}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.1.3"}],"title":[{"name":"text","data":"UV油墨的配制"}],"level":"3","id":"s3-1-3"}},{"name":"p","data":[{"name":"text","data":"UV油墨的性能关系到PDMS工作模具中的银导线结构能否完整转移到目标基底(衬底)上,其中主要包括UV油墨固化后,固化膜与固化导电材料和基底之间的黏附力、受热分解特性、机械性能以及固化速率等。UV油墨的组成一般由预聚体(主体树脂)、光引发剂、溶剂和添加剂4部分组成。本实验研究中配制UV油墨采用的原料如"},{"name":"xref","data":{"text":"表 2","type":"table","rid":"Table2","data":[{"name":"text","data":"表 2"}]}},{"name":"text","data":"所示。"}]},{"name":"table","data":{"id":"Table2","caption":[{"lang":"zh","label":[{"name":"text","data":"表2"}],"title":[{"name":"text","data":"UV油墨主要试剂"}]},{"lang":"en","label":[{"name":"text","data":"Table 2"}],"title":[{"name":"text","data":"Main reagents of UV ink"}]}],"note":[],"table":[{"head":[[{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"成分"}]},{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"类别"}]},{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"原料"}]},{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"产品代号"}]}]],"body":[[{"align":"center","style":"class:table_top_border2","data":[{"name":"text","data":"预聚体"}]},{"align":"center","style":"class:table_top_border2","data":[{"name":"text","data":"环氧树脂类、"},{"name":"text","data":""},{"name":"text","data":"环氧丙烯酸酯类"}]},{"align":"center","style":"class:table_top_border2","data":[{"name":"text","data":"3,4-环氧环己基甲基-3,"},{"name":"text","data":""},{"name":"text","data":"4-环氧环己基甲酸酯、"},{"name":"text","data":""},{"name":"text","data":"双酚A环氧丙烯酸酯"}]},{"align":"center","style":"class:table_top_border2","data":[{"name":"text","data":"UVR6110"}]}],[{"align":"center","data":[{"name":"text","data":"光引发剂"}]},{"align":"center","data":[{"name":"text","data":"芳基鎓盐"}]},{"align":"center","data":[{"name":"text","data":"三芳基硫鎓盐"}]},{"align":"center","data":[{"name":"text","data":"UVI-6976"}]}],[{"align":"center","data":[{"name":"text","data":"溶剂"}]},{"align":"center","data":[{"name":"text","data":"乙烯基醚类"}]},{"align":"center","data":[{"name":"text","data":"三甘醇二乙烯基醚"}]},{"align":"center","data":[{"name":"text","data":"DVE-3"}]}],[{"align":"center","style":"class:table_bottom_border","data":[{"name":"text","data":"添加剂"}]},{"align":"center","style":"class:table_bottom_border","data":[{"name":"text","data":"流平剂、消泡剂"}]},{"align":"center","style":"class:table_bottom_border","data":[{"name":"text","data":"有机硅流平剂、消泡剂"}]},{"style":"class:table_bottom_border","data":[]}]],"foot":[]}]}},{"name":"p","data":[{"name":"text","data":"UV油墨材料的配制方法如下:分别选取6%的三芳基硫鎓盐,30%的三甘醇二乙烯基醚,以及1%的1-羟基环已基苯基甲酮,配成均匀溶液Ⅰ;再分别选取50%的3,4-环氧环己基甲基-3,4-环氧环己基甲酸酯、10%的双酚A环氧丙烯酸酯加入到溶液Ⅰ中,配置成均匀溶液Ⅱ;最后加入1%的有机硅类或硅聚醚类消泡剂和2%的有机硅烷类流平剂,即可得到阳离子聚合型UV油墨,测得其主要性能参数如"},{"name":"xref","data":{"text":"表 3","type":"table","rid":"Table3","data":[{"name":"text","data":"表 3"}]}},{"name":"text","data":"所示。"}]},{"name":"table","data":{"id":"Table3","caption":[{"lang":"zh","label":[{"name":"text","data":"表3"}],"title":[{"name":"text","data":"UV固化膜的主要性能参数"}]},{"lang":"en","label":[{"name":"text","data":"Table 3"}],"title":[{"name":"text","data":"Main performance parameters of UV curing film"}]}],"note":[],"table":[{"head":[[{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"材料"}]},{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"黏度/(mPa·s)"}]},{"align":"center","style":"class:table_top_border","data":[{"name":"text","data":"表面张力/(μN·cm"},{"name":"sup","data":[{"name":"text","data":"-1"}]},{"name":"text","data":")"}]}]],"body":[[{"align":"center","style":"class:table_top_border2 table_bottom_border","data":[{"name":"text","data":"UV油墨"}]},{"align":"center","style":"class:table_top_border2 table_bottom_border","data":[{"name":"text","data":"15"}]},{"align":"center","style":"class:table_top_border2 table_bottom_border","data":[{"name":"text","data":"3.2"}]}]],"foot":[]}]}}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2"}],"title":[{"name":"text","data":"打印基底温度对母版模具结构的影响"}],"level":"2","id":"s3-2"}},{"name":"p","data":[{"name":"text","data":"打印基底的温度不仅影响PMMA材料与玻璃基底的黏结强度,也影响所复制的PDMS工作模具的质量与精度,因此,打印基底的温度要严格控制在合理范围内。通过实验研究了打印基底温度与母版模具结构的关系,并对由母版模具复制成型的PDMS工作模具(母版模具的反形)的截面形态进行了表征,如"},{"name":"xref","data":{"text":"图 6","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure6","caption":[{"lang":"zh","label":[{"name":"text","data":"图6"}],"title":[{"name":"text","data":"不同打印基底温度条件下制造的PDMS工作模具截面形态"}]},{"lang":"en","label":[{"name":"text","data":"Fig 6"}],"title":[{"name":"text","data":"Cross-sectional morphology of PDMS working mould fabricated at different printed substrate temperatures"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717910&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717910&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717910&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"由"},{"name":"xref","data":{"text":"图 6(a)","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6(a)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"6(f)","type":"fig","rid":"Figure6","data":[{"name":"text","data":"6(f)"}]}},{"name":"text","data":"可知,随着打印基底温度的升高,PDMS软模具的凹槽开口逐渐增大。由刮涂实验可知,在相同刮涂参数下,随着凹槽开口变大,刮涂效果(银浆在型腔内的填充效果)逐渐变差,因为在刮涂时,银浆材料在软模具表面的附着力随着它与侧壁间距离的增大而逐渐减小,导致填充效果变差。综合考虑银浆在凹槽中的填充效果和在基底上的附着力等因素,得出最佳打印基底温度为120 ℃,如"},{"name":"xref","data":{"text":"图 6(c)","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6(c)"}]}},{"name":"text","data":"所示,此时银浆刮涂填充效果最佳。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.3"}],"title":[{"name":"text","data":"刮涂工艺对银浆填充PDMS工作模具的影响"}],"level":"2","id":"s3-3"}},{"name":"p","data":[{"name":"text","data":"刮涂填充关系到最终制造的加热线质量的好坏,因此,刮涂工艺参数直接影响到最终电加热玻璃的光电性能。实验研究发现,刮涂填充银浆至PDMS工作模具时,刮涂填充效果不仅与凹槽开口尺寸有关,也与刮涂角度有关。"},{"name":"xref","data":{"text":"图 7","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7"}]}},{"name":"text","data":"展示了在相同刮涂速度下,不同刮涂角度下(刮刀与刮涂方向成30°,60°,90°角)银浆对PDMS工作模具的填充效果(转印到玻璃基底,表征其截面形貌),其中"},{"name":"xref","data":{"text":"图 7(a)","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7(a)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"7(c)","type":"fig","rid":"Figure7","data":[{"name":"text","data":"7(c)"}]}},{"name":"text","data":"分别为刮刀角度为30°,60°和90°时的填充效果,"},{"name":"xref","data":{"text":"图 7(d)","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7(d)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"7(f)","type":"fig","rid":"Figure7","data":[{"name":"text","data":"7(f)"}]}},{"name":"text","data":"为"},{"name":"xref","data":{"text":"图 7(a)","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7(a)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"7(c)","type":"fig","rid":"Figure7","data":[{"name":"text","data":"7(c)"}]}},{"name":"text","data":"对应的填充状态去除转印介质后的银导线结构。通过表征转印到玻璃基底银线的截面形貌以说明刮刀角度对银浆填充效果的影响,其中,PDMS模具为线栅结构,线宽为20 μm,周期为200 μm。"}]},{"name":"fig","data":{"id":"Figure7","caption":[{"lang":"zh","label":[{"name":"text","data":"图7"}],"title":[{"name":"text","data":"刮涂角度对银浆填充效果的影响"}]},{"lang":"en","label":[{"name":"text","data":"Fig 7"}],"title":[{"name":"text","data":"Effect of scrape angle on filling effect of silver paste"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717914&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717914&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717914&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"实验结果显示,银浆在PDMS工作模具凹槽内填充状态主要有三种形态:月牙型、半填充型和完全填充型,其中发亮部分为导电银浆,通过进行UV微转印介质去除前后的银浆形态对比可知,当填充状态为月牙型时,所制造的银导线为中空结构,如"},{"name":"xref","data":{"text":"图 7(d)","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7(d)"}]}},{"name":"text","data":"所示,这将大大降低银导线与基底之间的附着力;当填充状态为半填充时,可以提高银导线与基底之间的附着力,但会降低制造的银线结构高宽比,影响银导线的导电性能(方阻增大),如"},{"name":"xref","data":{"text":"图 7(e)","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7(e)"}]}},{"name":"text","data":"所示;当填充状态为完全填充时,可以同时兼顾银线与基底之间的附着力、银线结构高宽比等因素,获得性能较为理想的导电银线结构,如"},{"name":"xref","data":{"text":"图 7(f)","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7(f)"}]}},{"name":"text","data":"所示。综合以上因素所得,当刮涂角度为80~90°时,银浆的填充效果最好。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.4"}],"title":[{"name":"text","data":"转印前银浆预固化温度和时间对银导线转印质量的影响"}],"level":"2","id":"s3-4"}},{"name":"p","data":[{"name":"text","data":"采用UV油墨转印银浆时,银浆的预固化温度和固化时间对微转印后的银导线连续性具有重要影响。实验中发现,当固化时间大于10 min时,固化时间对银浆的固化性能影响较小,因此选择固化时间为10 min。"},{"name":"xref","data":{"text":"图 8","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8"}]}},{"name":"text","data":"所示为固化时间为10 min,不同预固化温度时的转印结果。"}]},{"name":"fig","data":{"id":"Figure8","caption":[{"lang":"zh","label":[{"name":"text","data":"图8"}],"title":[{"name":"text","data":"固化温度对银线转印质量的影响"}]},{"lang":"en","label":[{"name":"text","data":"Fig 8"}],"title":[{"name":"text","data":"Effect of curing temperature on quality of silver transfer"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717919&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717919&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717919&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"实验结果显示,当在室温下(25 ℃),银浆不进行预固化时会出现银浆转印不完全的现象,部分银浆残留在PDMS工作模具凹槽内,如"},{"name":"xref","data":{"text":"图 8(a)","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8(a)"}]}},{"name":"text","data":"所示。因为未对银浆加热,导致银浆固化程度较低,内部结合力小,使得UV油墨固化后仅能转移部分银浆。随着固化温度的升高,银浆的转印量逐渐提高,不连续缺陷得到明显改善,如"},{"name":"xref","data":{"text":"图 8(b)","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8(b)"}]}},{"name":"text","data":"和"},{"name":"xref","data":{"text":"图 8(c)","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8(c)"}]}},{"name":"text","data":"所示;当固化温度为90~110 ℃时,银浆的固化程度增大,银浆材料内部结合力有所增强,使得银浆的转印效果明显,转移成功率得到很大提高,如"},{"name":"xref","data":{"text":"图 8(d)","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8(d)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"8(f)","type":"fig","rid":"Figure8","data":[{"name":"text","data":"8(f)"}]}},{"name":"text","data":"所示;当固化温度高于110 ℃时,转印的银线将会出现局部断裂的情况,随着预固化温度的不断提高,这种缺陷出现的概率逐渐增大,如"},{"name":"xref","data":{"text":"图 8(g)","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8(g)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"8(h)","type":"fig","rid":"Figure8","data":[{"name":"text","data":"8(h)"}]}},{"name":"text","data":"所示,究其原因是:当固化温度过大时,银浆的固化程度过高,银线变得脆而硬,在UV辅助微转印的过程中,柔性PDMS工作模具难免出现弯曲的情况,此时银线极易出现折断的情况。综合以上因素,当转印前银浆的预固化温度为90~110 ℃,固化时间为10 min时,能获得最佳UV辅助微转印导电银线结构。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.5"}],"title":[{"name":"text","data":"UV油墨分解温度对银导线质量的影响"}],"level":"2","id":"s3-5"}},{"name":"p","data":[{"name":"text","data":"UV辅助微转印过程中,UV油墨的分解温度对银导线的转印与结合具有重要的影响。需通过具体实验研究揭示UV油墨分解温度对银导线转印及附着的影响规律。"},{"name":"xref","data":{"text":"图 9(a)","type":"fig","rid":"Figure9","data":[{"name":"text","data":"图 9(a)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"9(f)","type":"fig","rid":"Figure9","data":[{"name":"text","data":"9(f)"}]}},{"name":"text","data":"展示了UV固化膜(厚度为15 μm,玻璃基底)在不同温度下加热2 min后的分解结果。当加热温度低于500 ℃时,UV固化膜并没有出现明显的分解现象;继续升高温度至550 ℃,UV固化膜开始受热分解,但仍然存在一小部分的残留,如"},{"name":"xref","data":{"text":"图 9(e)","type":"fig","rid":"Figure9","data":[{"name":"text","data":"图 9(e)"}]}},{"name":"text","data":"所示;当温度升高至600 ℃时,UV固化膜完全被分解,如"},{"name":"xref","data":{"text":"图 9(f)","type":"fig","rid":"Figure9","data":[{"name":"text","data":"图 9(f)"}]}},{"name":"text","data":"所示。因此,采用UV辅助微转印制造银线栅结构时,应该保证UV固化膜的加热分解温度不低于550 ℃。"}]},{"name":"fig","data":{"id":"Figure9","caption":[{"lang":"zh","label":[{"name":"text","data":"图9"}],"title":[{"name":"text","data":"UV固化膜在不同温度下的分解状态图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 9"}],"title":[{"name":"text","data":"Decomposition state of UV cured film at different temperatures"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717924&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717924&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717924&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"不同温度分解UV固化膜时对银导线结构是否有影响是银导线转印成功的关键因素之一。"},{"name":"xref","data":{"text":"图 10","type":"fig","rid":"Figure10","data":[{"name":"text","data":"图 10"}]}},{"name":"text","data":"展示了不同固化膜分解温度对转印银导线结构的影响,"},{"name":"xref","data":{"text":"图 10(a)","type":"fig","rid":"Figure10","data":[{"name":"text","data":"图 10(a)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"10(c)","type":"fig","rid":"Figure10","data":[{"name":"text","data":"10(c)"}]}},{"name":"text","data":"所示为加热温度分别为550,580和600 ℃时转印银线的结构图,"},{"name":"xref","data":{"text":"图 10(d)","type":"fig","rid":"Figure10","data":[{"name":"text","data":"图 10(d)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"10(f)","type":"fig","rid":"Figure10","data":[{"name":"text","data":"10(f)"}]}},{"name":"text","data":"分别为对应的局部放大图。"}]},{"name":"fig","data":{"id":"Figure10","caption":[{"lang":"zh","label":[{"name":"text","data":"图10"}],"title":[{"name":"text","data":"UV油墨固化膜不同分解温度对转印银线结构的影响"}]},{"lang":"en","label":[{"name":"text","data":"Fig 10"}],"title":[{"name":"text","data":"Effect of UV ink curing film on structure of transfer printing silver wire at different decomposition temperatures"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717928&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717928&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717928&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"虽然测定的固化膜分解临界温度约为550 ℃,但在此温度下去除固化膜,银线结构仍然存在一定程度的破坏,甚至与基底脱落。当继续升高分解温度时,固化膜的分解速度加快,对银导线结构的破坏程度降低,提高了银导线转移的成功率。经过多次试验得出,UV油墨完全分解的最低温度应为600 ℃。"}]},{"name":"p","data":[{"name":"text","data":"综合以上因素,本实验研究优化所得的具体工艺参数为:采用EFD 3D打印母版结构时,打印基底加热温度为120 ℃;刮涂填充银浆时,保持刮涂角度在80~90°之间匀速刮涂;PDMS工作模具内银浆的预固化温度为100 ℃,且固化时间不低于10 min;UV辅助微转印过程中,UV油墨完全分解的最低温度为600 ℃。"}]},{"name":"p","data":[{"name":"text","data":"同时,该工艺制造的银导线的导电性与玻璃间的附着力不仅与银线的结构参数有关(高宽比等),还与烧结后处理工艺参数有很大关系。烧结后处理工艺参数的设定与具体应用中银导线附着力及导电性的要求相关,也与银浆材料的性能有关。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4"}],"title":[{"name":"text","data":"实际案例研究"}],"level":"1","id":"s4"}},{"name":"p","data":[{"name":"text","data":"采用本文所提出的EFD 3D打印与UV辅助微转印制造透明电加热玻璃的方法,通过典型案例验证所得最佳工艺参数的可行性。"}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.1"}],"title":[{"name":"text","data":"银线栅结构的制造"}],"level":"2","id":"s4-1"}},{"name":"p","data":[{"name":"text","data":"采用EFD 3D打印,根据实际需要调节不同的打印工艺参数,可制备一系列不同规格的PMMA母版。本文采用优化的工艺参数打印并复制PMMA母版和PDMS工作软模具,制备的银线栅图形的几何尺寸为:图案面积70 mm×70 mm,线宽15 μm,高宽比0.7以上,周期1 000 μm。为了进一步提高银导线的导电能力,根据所使用导电银浆的烧结工艺特性,烧结温度为650~720 ℃,烧结时间为150 s,获得的最终银线结构如"},{"name":"xref","data":{"text":"图 11","type":"fig","rid":"Figure11","data":[{"name":"text","data":"图 11"}]}},{"name":"text","data":"所示。由图可知,制造的银导线具有较高的含银量及较大的高宽比。基于EFD 3D打印技术的打印工艺参数为:电压1 300~1 600 V,背压3~3.5 kPa,储料桶以及喷头的加热温度200~205 ℃,打印基底加热温度120 ℃,工作台移动速度30~40 mm/s。"}]},{"name":"fig","data":{"id":"Figure11","caption":[{"lang":"zh","label":[{"name":"text","data":"图11"}],"title":[{"name":"text","data":"复合工艺制造的银线栅结构"}]},{"lang":"en","label":[{"name":"text","data":"Fig 11"}],"title":[{"name":"text","data":"Silver wire grid structure manufactured by composite manufacturing process"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717930&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717930&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717930&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.2"}],"title":[{"name":"text","data":"银线结构的光电性能测量"}],"level":"2","id":"s4-2"}},{"name":"p","data":[{"name":"text","data":"采用毫欧计(直流电阻测试仪AT516)测量所转印银线结构的电学性能。其测试原理为:将待测样品的两端分别贴上两条铜箔纸胶带,且两端的铜箔纸胶带相距10~20 mm,由于铜箔纸胶带的方阻相对于待测样品的方阻极低,不会影响被测精度,因此可忽略其影响;将毫欧计的4个端子按测试要求分别接在4条铜箔纸胶带上,接通毫欧计读取所测样品的方阻。对所转印的银线栅结构进行方阻测试,该阵列导电银线的有效面积为60 mm×70 mm,单根线宽15 μm,周期为1 000 μm,测得此线栅结构的总方阻约为0.5 Ω/sq。"}]},{"name":"p","data":[{"name":"text","data":"为了验证所制造电加热玻璃的透光性能(透光率),本实验使用紫外可见分光光度计(UV-6100)对所制备的线宽为15 μm、周期为1 000 μm的银线栅结构进行透光性测试。"},{"name":"xref","data":{"text":"图 12","type":"fig","rid":"Figure12","data":[{"name":"text","data":"图 12"}]}},{"name":"text","data":"展示了本实验所制备的具有银线栅结构的普通玻璃、空白普通玻璃、ITO导电玻璃的紫外可见光透射光谱图。由"},{"name":"xref","data":{"text":"图 12","type":"fig","rid":"Figure12","data":[{"name":"text","data":"图 12"}]}},{"name":"text","data":"可知,ITO导电玻璃在可见光范围内存在较大波动,并且在短波长处的透光率下降明显;本实验制造的电加热玻璃在可见光范围内显示出平坦的光谱透射率;选取波长在550 nm处的透光率,所制造的电加热玻璃的透光率约为88%(空白玻璃透光率为90%左右),ITO导电玻璃的透光率约为78%,由此可见,其透光性能明显优于ITO导电玻璃,具有优良的光学性能。"}]},{"name":"fig","data":{"id":"Figure12","caption":[{"lang":"zh","label":[{"name":"text","data":"图12"}],"title":[{"name":"text","data":"紫外可见光透射光谱"}]},{"lang":"en","label":[{"name":"text","data":"Fig 12"}],"title":[{"name":"text","data":"Ultraviolet visible light transmission spectra"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717932&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717932&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717932&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.3"}],"title":[{"name":"text","data":"银线栅结构与玻璃基底黏附力测试"}],"level":"2","id":"s4-3"}},{"name":"p","data":[{"name":"text","data":"为了测试银线栅结构与玻璃基底之间的附着力,本实验选用3M百格测试胶带进行银线附着力的测试。其测试过程为:将3M百格测试胶带紧贴在所制造的银线栅结构上,并用橡皮擦用力擦拭胶带,以加大胶带与被测区域的接触面积及力度,确保测试胶带与银线栅结构的紧密接触。静置20 min后,在垂直方向从测试胶带的另一端揭下胶带,同一位置进行2次相同试验,重复1~2次,观察所测区域银线的脱落情况,实验结果显示银线栅结构的脱落面积小于5%。根据3M百格测试胶带测试标准,所制造的银线栅结构与玻璃基底的黏附力等级达到4B,由此说明制备的银线栅结构附着力良好。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.4"}],"title":[{"name":"text","data":"银线栅结构电加热效果测试"}],"level":"2","id":"s4-4"}},{"name":"p","data":[{"name":"text","data":"为了验证所制造电加热玻璃的加热效果,本实验采用加热线线宽15 μm,高宽比为0.7,周期为1 000 μm,有效加热面积为60 mm×70 mm的电加热玻璃,在恒定电压3 V下进行通电加热测试,模拟现实的除冰环境,验证所制造电加热玻璃的除冰效果,如"},{"name":"xref","data":{"text":"图 13","type":"fig","rid":"Figure13","data":[{"name":"text","data":"图 13"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure13","caption":[{"lang":"zh","label":[{"name":"text","data":"图13"}],"title":[{"name":"text","data":"电加热玻璃化冰效果测试"}]},{"lang":"en","label":[{"name":"text","data":"Fig 13"}],"title":[{"name":"text","data":"Experiment on deicing effect of glass heater"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717935&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717935&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1717935&type=middle"}]}},{"name":"p","data":[{"name":"xref","data":{"text":"图 13(a)","type":"fig","rid":"Figure13","data":[{"name":"text","data":"图 13(a)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"13(f)","type":"fig","rid":"Figure13","data":[{"name":"text","data":"13(f)"}]}},{"name":"text","data":"为通电前后电加热玻璃的除冰效果。"},{"name":"xref","data":{"text":"图 13(a)","type":"fig","rid":"Figure13","data":[{"name":"text","data":"图 13(a)"}]}},{"name":"text","data":"为实验中自制的圆形冰块,厚度约为5 mm,直径为12 mm,"},{"name":"xref","data":{"text":"图 13(b)","type":"fig","rid":"Figure13","data":[{"name":"text","data":"图 13(b)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"13(f)","type":"fig","rid":"Figure13","data":[{"name":"text","data":"13(f)"}]}},{"name":"text","data":"为整个除冰过程。由"},{"name":"xref","data":{"text":"图 13(b)","type":"fig","rid":"Figure13","data":[{"name":"text","data":"图 13(b)"}]}},{"name":"text","data":"可见,当未接通3 V电源电压时,视野非常模糊;当接通电源60 s之后,如"},{"name":"xref","data":{"text":"图 13(c)","type":"fig","rid":"Figure13","data":[{"name":"text","data":"图 13(c)"}]}},{"name":"text","data":"所示,在电加热区域的冰块已经开始融化;在150 s之后,电加热区域的冰块大部分融化,如"},{"name":"xref","data":{"text":"图 13(d)","type":"fig","rid":"Figure13","data":[{"name":"text","data":"图 13(d)"}]}},{"name":"text","data":"所示;当通电时间为220 s时,电加热区域的冰块进一步融化,视野变得清晰可见,如"},{"name":"xref","data":{"text":"图 13(e)","type":"fig","rid":"Figure13","data":[{"name":"text","data":"图 13(e)"}]}},{"name":"text","data":"所示;在通电260 s断电之后,可以观测到放置在电加热区域的冰块完全融化,未处在电加热区域的冰块仍然存在,如"},{"name":"xref","data":{"text":"图 13(f)","type":"fig","rid":"Figure13","data":[{"name":"text","data":"图 13(f)"}]}},{"name":"text","data":"所示,其中虚线内是不在加热区域的剩余冰块。由此可知,所制造的电加热玻璃4 min左右即可完全融化掉厚度为5 mm、面积约为3 600 mm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"的冰块,此时系统所施加的电压仅为3 V。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"5"}],"title":[{"name":"text","data":"结论"}],"level":"1","id":"s5"}},{"name":"p","data":[{"name":"text","data":"本文针对现有高性能电加热玻璃制造中存在的问题,提出了基于EFD 3D打印和UV辅助微转印的高性能电加热玻璃复合制造工艺,并通过实验研究揭示了主要工艺参数对所制造透明电加热玻璃加热线结构参数的影响及规律。通过优化工艺参数,确定了EFD 3D打印母版结构时打印基底的加热温度为120 ℃,刮涂填充时保持刮涂角度为80~90°之间匀速刮涂,PDMS工作模具内银浆的预固化温度为100 ℃且不低于10 min,以及UV辅助微转印过程中UV油墨的分解温度为600 ℃。依据优化的工艺参数,最终制备了线宽15 μm,高宽比为0.7,周期为1 000 μm,有效面积为60 mm×70 mm的银线栅结构,烧结处理后得到具有高光电性能及高附着力(透光率为88%左右,方阻约为0.5Ω/sq,附着力为4B级)加热线的电加热玻璃。最后,对制造的电加热玻璃进行了除冰实验。实验结果显示,所制造的电加热玻璃在低功耗的条件下(3 V电压)展现了良好的化冰效果。研究结果表明,所制造的电加热玻璃在保证高透光率的同时,方阻得到了大幅度降低(电加热功耗得到大幅度降低),同时也保证了电加热线的高附着力,从而使所制造的电加热玻璃整体表现出了较高的综合性能。另外,整个复合制造工艺过程成本较低,易实现批量化流水生产,为低成本、批量化的高性能电加热玻璃的制造提供了一种全新的工艺方法,有望解决电加热玻璃制造技术不能兼顾低成本、高性能制造的难题。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"b1","label":"1","citation":[{"lang":"en","text":[{"name":"text","data":"GORDON R G. Criteria for choosing transparent conductors[J]."},{"name":"italic","data":[{"name":"text","data":"MRS Bulletin"}]},{"name":"text","data":", 2000, 25(8): 52-57."}]}]},{"id":"b2","label":"2","citation":[{"lang":"en","text":[{"name":"text","data":"YOON Y H, SONG J W, KIM D, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Transparent film heater using single-walled carbon nanotubes[J]."},{"name":"italic","data":[{"name":"text","data":"Advanced Materials"}]},{"name":"text","data":", 2007, 19(23): 4284-4287."}]}]},{"id":"b3","label":"3","citation":[{"lang":"en","text":[{"name":"text","data":"KIM T Y, KIM Y W, LEE H S, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Uniformly interconnected silver-nanowire networks for transparent film heaters[J]."},{"name":"italic","data":[{"name":"text","data":"Advanced Functional Materials"}]},{"name":"text","data":", 2013, 23(10): 1250-1255."}]}]},{"id":"b4","label":"4","citation":[{"lang":"en","text":[{"name":"text","data":"AN B W, GWAK E J, KIM K, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Stretchable, transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability[J]."},{"name":"italic","data":[{"name":"text","data":"Nano Letters"}]},{"name":"text","data":", 2015, 16(1): 471-478."}]}]},{"id":"b5","label":"5","citation":[{"lang":"en","text":[{"name":"text","data":"KANG J, JANG Y, KIM Y, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. An Ag-grid/graphene hybrid structure for large-scale transparent flexible heaters[J]."},{"name":"italic","data":[{"name":"text","data":"Nanoscale"}]},{"name":"text","data":", 2015, 7(15): 6567-6573."}]}]},{"id":"b6","label":"6","citation":[{"lang":"en","text":[{"name":"text","data":"LI Y, ZHANG Z, LI X, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. A smart, stretchable resistive heater textile[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Materials Chemistry C"}]},{"name":"text","data":", 2017, 5(1): 41-46."}]}]},{"id":"b7","label":"7","citation":[{"lang":"en","text":[{"name":"text","data":"CAI C, JIA F, LI A, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Crackless transfer of large-area graphene films for superior-performance transparent electrodes[J]."},{"name":"italic","data":[{"name":"text","data":"Carbon"}]},{"name":"text","data":", 2016, 98: 457-462."}]}]},{"id":"b8","label":"8","citation":[{"lang":"zh","text":[{"name":"text","data":"刘世丽, 辛智青, 李修, 等.导电材料在透明电极中的应用研究[J].功能材料与器件学报, 2015, 21(4): 13-18."}]},{"lang":"en","text":[{"name":"text","data":"LIU SH L, XIN ZH Q, LI X, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Application of conductive materials in transparent electrodes[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Functional Materials and Devices"}]},{"name":"text","data":". 2015, 21(4): 13-18. (in Chinese)"}]}]},{"id":"b9","label":"9","citation":[{"lang":"en","text":[{"name":"text","data":"LEE Y, MIN S Y, KIM T S, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Versatile metal nanowiring platform for large-scale nano-and opto-electronic devices[J]."},{"name":"italic","data":[{"name":"text","data":"Advanced Materials"}]},{"name":"text","data":", 2016, 28(41): 9109-9116."}]}]},{"id":"b10","label":"10","citation":[{"lang":"en","text":[{"name":"text","data":"DONG P, ZHU Y, ZHANG J, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Graphene on metal grids as the transparent conductive material for dye sensitized solar cell[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Physical Chemistry C"}]},{"name":"text","data":", 2014, 118(45): 25863-25868."}]}]},{"id":"b11","label":"11","citation":[{"lang":"zh","text":[{"name":"text","data":"张冬至.静电诱导自组装碳纳米管薄膜的结构表征与电学性能[J].光学 精密工程, 2014, 22(6): 1562-1570."}]},{"lang":"en","text":[{"name":"text","data":"ZHANG D ZH.Structure characterization and electric properties of electrostatic-induced self-assembly carbon nanotube films[J]."},{"name":"italic","data":[{"name":"text","data":"Opt. Precision Eng."}]},{"name":"text","data":", 2014, 22(6): 1562-1570. (in Chinese)"}]}]},{"id":"b12","label":"12","citation":[{"lang":"en","text":[{"name":"text","data":"ANGMO D, KREBS F C. Flexible ITO-free polymer solar cells[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Applied Polymer Science"}]},{"name":"text","data":", 2013, 129(1): 1-14."}]}]},{"id":"b13","label":"13","citation":[{"lang":"zh","text":[{"name":"text","data":"白盛池, 汪海风, 杨辉, 等.转印法制备薄膜太阳能电池用银纳米线-聚合物复合透明导电薄膜[J].硅酸盐学报, 2018, 46(3): 347-353."}]},{"lang":"en","text":[{"name":"text","data":"BAI SH CH, WANG H F, YANG H, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Preparation of silver nanowire-polymer composite transparent conductive film for thin film solar cell by transfer method[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Silicate"}]},{"name":"text","data":", 2018, 46(3): 347-353. (in Chinese)"}]}]},{"id":"b14","label":"14","citation":[{"lang":"en","text":[{"name":"text","data":"JANAS D, KOZIOLl K K. A review of production methods of carbon nanotube and graphene thin films for electrothermal applications[J]."},{"name":"italic","data":[{"name":"text","data":"Nanoscale"}]},{"name":"text","data":", 2014, 6(6): 3037-3045."}]}]},{"id":"b15","label":"15","citation":[{"lang":"en","text":[{"name":"text","data":"KANG J, KIM H, KIM K S, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. High-performance graphene-based transparent flexible heaters[J]."},{"name":"italic","data":[{"name":"text","data":"Nano Letters"}]},{"name":"text","data":", 2011, 11(12): 5154-5158."}]}]},{"id":"b16","label":"16","citation":[{"lang":"en","text":[{"name":"text","data":"SUI D, HUANG Y, HUANG L, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Flexible and transparent electrothermal film heaters based on graphene materials[J]."},{"name":"italic","data":[{"name":"text","data":"Small"}]},{"name":"text","data":", 2011, 7(22): 3186-3192."}]}]},{"id":"b17","label":"17","citation":[{"lang":"en","text":[{"name":"text","data":"YE S, RATHMELLL A R, CHEN Z, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Metal nanowire networks: the next generation of transparent conductors[J]."},{"name":"italic","data":[{"name":"text","data":"Advanced Materials"}]},{"name":"text","data":", 2014, 26(39): 6670-6687."}]}]},{"id":"b18","label":"18","citation":[{"lang":"en","text":[{"name":"text","data":"LEE Y, MIN S Y, KIM T S, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Versatile metal nanowiring platform for large-scale nano-and opto-electronic devices[J]."},{"name":"italic","data":[{"name":"text","data":"Advanced Materials"}]},{"name":"text","data":", 2016, 28(41): 9109-9116."}]}]},{"id":"b19","label":"19","citation":[{"lang":"zh","text":[{"name":"text","data":"冯晓国, 张舸, 汤洋.薄膜型金属网栅的电磁屏蔽特性[J].光学 精密工程, 2015, 23(3): 686-691."}]},{"lang":"en","text":[{"name":"text","data":"FENG X G, ZHANG G, TANG Y. Electromagnetic shielding properties of metallic mesh coatings[J]."},{"name":"italic","data":[{"name":"text","data":"Opt. Precision Eng."}]},{"name":"text","data":", 2015, 23(3): 686-691. (in Chinese)"}]}]},{"id":"b20","label":"20","citation":[{"lang":"en","text":[{"name":"text","data":"LORDAN D, BURKE M, MANNING M, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Asymmetric pentagonal metal meshes for flexible transparent electrodes and heaters[J]."},{"name":"italic","data":[{"name":"text","data":"ACS Applied Materials & Interfaces"}]},{"name":"text","data":", 2017, 9(5): 4932-4940."}]}]},{"id":"b21","label":"21","citation":[{"lang":"en","text":[{"name":"text","data":"LANGLEY D P, LAGRANGE M, GIUSTI G, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Metallic nanowire networks: effects of thermal annealing on electrical resistance[J]."},{"name":"italic","data":[{"name":"text","data":"Nanoscale"}]},{"name":"text","data":", 2014, 6(22): 13535-13543."}]}]},{"id":"b22","label":"22","citation":[{"lang":"en","text":[{"name":"text","data":"GAYNOR W, HOFMANN S, CHRISTOFORO M G, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Color in the corners: ITO-free white OLEDs with angular color stability[J]."},{"name":"italic","data":[{"name":"text","data":"Advanced Materials"}]},{"name":"text","data":", 2013, 25(29): 4006-4013."}]}]},{"id":"b23","label":"23","citation":[{"lang":"en","text":[{"name":"text","data":"ZILBERBERG K, GASSE F, PAGUI R, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Highly robust indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxides[J]."},{"name":"italic","data":[{"name":"text","data":"Advanced Functional Materials"}]},{"name":"text","data":", 2014, 24(12): 1671-1678."}]}]},{"id":"b24","label":"24","citation":[{"lang":"en","text":[{"name":"text","data":"JIN Y, LI L, CHENG Y, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Cohesively enhanced conductivity and adhesion of flexible silver nanowire networks by biocompatible polymer sol-gel transition[J]."},{"name":"italic","data":[{"name":"text","data":"Advanced Functional Materials"}]},{"name":"text","data":", 2015, 25(10): 1581-1587."}]}]},{"id":"b25","label":"25","citation":[{"lang":"en","text":[{"name":"text","data":"IWAHASHI T, YANG R, OKABE N, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Nanoimprint-assisted fabrication of high haze metal mesh electrode for solar cells[J]."},{"name":"italic","data":[{"name":"text","data":"Applied Physics Letters"}]},{"name":"text","data":", 2014, 105: 223901."}]}]},{"id":"b26","label":"26","citation":[{"lang":"en","text":[{"name":"text","data":"KHAN A, LEE S, JANG T, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process[J]."},{"name":"italic","data":[{"name":"text","data":"Small"}]},{"name":"text","data":", 2016, 12(22): 3021-3030."}]}]},{"id":"b27","label":"27","citation":[{"lang":"en","text":[{"name":"text","data":"HOKARI R, KURIHARA K, TAKADA N,"},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Development of simple high-resolution embedded printing for transparent metal grid conductors[J]."},{"name":"italic","data":[{"name":"text","data":"Applied Physics Letters"}]},{"name":"text","data":", 2017, 111(6): 063107."}]}]},{"id":"b28","label":"28","citation":[{"lang":"en","text":[{"name":"text","data":"MAURER J H M, GONZALEZGARCIA L, REISER B, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics[J]."},{"name":"italic","data":[{"name":"text","data":"Nano Letters"}]},{"name":"text","data":", 2016, 16(5): 2921-2925."}]}]},{"id":"b29","label":"29","citation":[{"lang":"en","text":[{"name":"text","data":"BURGUES-CEBALLOS I, KEHAGIAS N, SOTOMAYOR-TORRES C M, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Embedded inkjet printed silver grids for ITO-free organic solar cells with high fill factor[J]."},{"name":"italic","data":[{"name":"text","data":"Solar Energy Materials & Solar Cells"}]},{"name":"text","data":", 2014, 127(4): 50-57."}]}]},{"id":"b30","label":"30","citation":[{"lang":"zh","text":[{"name":"text","data":"杨春和, 唐爱伟, 滕枫.气溶胶喷墨打印在有机器件制备中的应用[J].液晶与显示, 2012, 27(6): 765-769."}]},{"lang":"en","text":[{"name":"text","data":"YANG CH H, TANG A W, TENG F. Aerosol jet printing and its application in organic devices[J]."},{"name":"italic","data":[{"name":"text","data":"Liquid Crystals and Displays"}]},{"name":"text","data":", 2012, 27(6): 765-769. (in Chinese)"}]}]},{"id":"b31","label":"31","citation":[{"lang":"en","text":[{"name":"text","data":"JANG Y, KIM J, BYUN D. Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Physics D Applied Physics"}]},{"name":"text","data":", 2013, 46(15): 155103."}]}]},{"id":"b32","label":"32","citation":[{"lang":"zh","text":[{"name":"text","data":"林行.一种具有电加热功能的夹层玻璃: 中国, CN204183964U[P]. 2015-03-04."}]},{"lang":"en","text":[{"name":"text","data":"LIN X. A kang of laminated glass with electric heating function: China, CN204183964U[P]. 2015-03-04. (in Chinese)"}]}]},{"id":"b33","label":"33","citation":[{"lang":"zh","text":[{"name":"text","data":"王明华, 杨立友, 蒋前哨, 等.可加热玻璃及其制作方法: 中国, CN104780632A[P]. 2015-07-15."}]},{"lang":"en","text":[{"name":"text","data":"WANG M H, YANG L Y, JIANG Q SH, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Heatable glass and manufacturing method: China, CN104780632A[P]. 2015-07-15. (in Chinese)"}]}]},{"id":"b34","label":"34","citation":[{"lang":"zh","text":[{"name":"text","data":"宋国山, 池科长, 周耀.一种汽车前挡夹丝加热玻璃: 中国, CN207135299U[P]. 2018-03-23."}]},{"lang":"en","text":[{"name":"text","data":"SONG G SH, CHI K CH, ZHOU Y. A kang of automobile front block wire heating glass: China, CN207135299U[P]. 2018-03-23. (in Chinese)"}]}]},{"id":"b35","label":"35","citation":[{"lang":"zh","text":[{"name":"text","data":"赵扬, 姜佳昕, 张恺, 等.基于电纺直写的图案化微纳结构喷印技术[J].光学 精密工程, 2016, 24(9): 2224-2231."}]},{"lang":"en","text":[{"name":"text","data":"ZHAO Y, JIANG J X, ZHANG K, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Precision deposition of micro/nano pattern printed by electrohydrodynamic direct-write[J]."},{"name":"italic","data":[{"name":"text","data":"Opt. Precision Eng.,"}]},{"name":"text","data":" 2016, 24(9): 2224-2231.(in Chinese)"}]}]},{"id":"b36","label":"36","citation":[{"lang":"zh","text":[{"name":"text","data":"钱垒, 兰红波, 赵佳伟, 等.电场驱动喷射沉积3D打印[J].中国科学:技术科学, 2018, 48(7): 773-782."}]},{"lang":"en","text":[{"name":"text","data":"QIAN L, LAN H B, ZHAO J W, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Electric-field-driven jet deposition 3D printing[J]."},{"name":"italic","data":[{"name":"text","data":"Chinese Science: Technical Science"}]},{"name":"text","data":", 2018, 48(7): 773-782. (in Chinese)"}]}]},{"id":"b37","label":"37","citation":[{"lang":"zh","text":[{"name":"text","data":"李文望, 郑高峰, 王翔, 等.电纺直写纳米纤维在图案化基底的定位沉积[J].光学 精密工程, 2010, 18(10): 2231-2238."}]},{"lang":"en","text":[{"name":"text","data":"LI W D, ZHENG G F, WANG X, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Position deposition of electrospinning direct-writing nanofiber on pattern substrate[J]."},{"name":"italic","data":[{"name":"text","data":"Opt. Precision Eng.,"}]},{"name":"text","data":" 2010, 18(10): 2231-2238. (in Chinese)"}]}]},{"id":"b38","label":"38","citation":[{"lang":"zh","text":[{"name":"text","data":"兰红波, 李涤尘, 卢秉恒.微纳尺度3D打印[J].中国科学:技术科学, 2015, 45(9): 919-940"}]},{"lang":"en","text":[{"name":"text","data":"LAN H B, LI D CH, LU B H. Micro-and nanoscale 3D printing[J]."},{"name":"italic","data":[{"name":"text","data":"Chinese Science: Technical Science"}]},{"name":"text","data":", 2015, 45(9): 919-940. (in Chinese)"}]}]},{"id":"b39","label":"39","citation":[{"lang":"zh","text":[{"name":"text","data":"李增辉, 兰红波, 刘红忠, 等.大面纳米积压印揭开式脱模建模与模拟[J].中国科学:技术科学, 2014, 44(10): 1087-1096."}]},{"lang":"en","text":[{"name":"text","data":"LI Z H, LAN H B, LIU H ZH, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Modeling and simulation of large-area nano-compressed embossing[J]."},{"name":"italic","data":[{"name":"text","data":"Chinese Science: Technical Science"}]},{"name":"text","data":", 2014, 44(10): 1087-1096. (in Chinese)"}]}]},{"id":"b40","label":"40","citation":[{"lang":"zh","text":[{"name":"text","data":"兰红波, 郭良乐, 许权, 等.大面积纳米压印光刻晶圆级复合软模具制造[J].光学 精密工程, 2018, 26(4): 894-905."}]},{"lang":"en","text":[{"name":"text","data":"LAN H B, GUO L L, XU Q, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":".. Wafer-level composite mold for large-area nanoimprint lithography[J]."},{"name":"italic","data":[{"name":"text","data":"Opt. Precision Eng.,"}]},{"name":"text","data":" 2018, 26(4): 894-905. (in Chinese)"}]}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.3788/OPE.20192704.0820","clc":[[{"name":"text","data":"TP391.73"}]],"dc":[],"publisherid":"gxjmgc-27-4-820","citeme":[],"fundinggroup":[{"lang":"zh","text":[{"name":"text","data":"国家自然科学基金资助项目(No.51705271,No.51775288);山东省自然科学基金资助项目(No.ZR2017QEE018);山东省高等学校科技计划资助项目(No.J17KA032)"}]}],"history":{"received":"2018-11-15","accepted":"2019-01-10","ppub":"2019-04-15","opub":"2020-06-16"},"copyright":{"data":[{"lang":"zh","data":[{"name":"text","data":"版权所有©《光学 精密工程》编辑部2019"}],"type":"copyright"},{"lang":"en","data":[{"name":"text","data":"Copyright ©2019 Optics and Precision Engineering. All rights reserved."}],"type":"copyright"}],"year":"2019"}},"appendix":[],"type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"光学 精密工程","issue":"4","volume":"27","originalSource":[]}