{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"软X射线光发射电子显微镜光束线聚焦用KB镜系统"}]},{"lang":"en","data":[{"name":"text","data":"KB mirror system of X-ray photo-emission electron microscope beamline"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"陈","givenname":"家华","namestyle":"eastern","prefix":""},{"lang":"en","surname":"CHEN","givenname":"Jia-hua","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"},{"rid":"aff3","text":"3"}],"role":["first-author"],"bio":[{"lang":"zh","text":["陈家华(1982-), 男, 浙江嘉兴人, 博士研究生, 高级工程师, 2005年于中国科学技术大学获得学士学位, 主要从事同步辐射技术的研究。E-mail:chenjiahua@sinap.ac.cn"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"陈家华"}]},{"name":"text","data":"(1982-), 男, 浙江嘉兴人, 博士研究生, 高级工程师, 2005年于中国科学技术大学获得学士学位, 主要从事同步辐射技术的研究。E-mail:"},{"name":"text","data":"chenjiahua@sinap.ac.cn"}]]}],"email":"chenjiahua@sinap.ac.cn","deceased":false},{"name":[{"lang":"zh","surname":"龚","givenname":"学鹏","namestyle":"eastern","prefix":""},{"lang":"en","surname":"GONG","givenname":"Xue-peng","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff2","text":"2"}],"role":["corresp"],"corresp":[{"rid":"cor1","lang":"zh","text":" 龚学鹏(1982-), 男, 内蒙古赤峰人, 博士, 副研究员, 2010年于吉林大学获得博士学位, 主要从事精密机械设计与工程CAE分析的研究。E-mail:gongxuepeng120@foxmail.com GONG Xue-peng, E-mail:gongxuepeng120@foxmail.com","data":[{"name":"text","data":" 龚学鹏(1982-), 男, 内蒙古赤峰人, 博士, 副研究员, 2010年于吉林大学获得博士学位, 主要从事精密机械设计与工程CAE分析的研究。E-mail:gongxuepeng120@foxmail.com GONG Xue-peng, E-mail:gongxuepeng120@foxmail.com"}]}],"email":"gongxuepeng120@foxmail.com","deceased":false},{"name":[{"lang":"zh","surname":"薛","givenname":"松","namestyle":"eastern","prefix":""},{"lang":"en","surname":"XUE","givenname":"Song","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"卢","givenname":"启鹏","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LU","givenname":"Qi-peng","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff2","text":"2"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"彭","givenname":"忠琦","namestyle":"eastern","prefix":""},{"lang":"en","surname":"PENG","givenname":"Zhong-qi","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff2","text":"2"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"宋","givenname":"源","namestyle":"eastern","prefix":""},{"lang":"en","surname":"SONG","givenname":"Yuan","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff2","text":"2"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"王","givenname":"依","namestyle":"eastern","prefix":""},{"lang":"en","surname":"WANG","givenname":"Yi","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff2","text":"2"}],"role":[],"deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"1","text":"中国科学院 上海应用物理研究所, 上海 201800","data":[{"name":"text","data":"中国科学院 上海应用物理研究所, 上海 201800"}]},{"lang":"en","label":"1","text":"Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China","data":[{"name":"text","data":"Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China"}]}]},{"id":"aff2","intro":[{"lang":"zh","label":"2","text":"中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033","data":[{"name":"text","data":"中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033"}]},{"lang":"en","label":"2","text":"State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China","data":[{"name":"text","data":"State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China"}]}]},{"id":"aff3","intro":[{"lang":"zh","label":"3","text":"中国科学院大学, 北京 100049","data":[{"name":"text","data":"中国科学院大学, 北京 100049"}]},{"lang":"en","label":"3","text":"University of Chinese Academy of Sciences, Beijing 100049, China","data":[{"name":"text","data":"University of Chinese Academy of Sciences, Beijing 100049, China"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"研制了光发射电子显微镜(PEEM)高精度微聚焦系统,以实现上海光源软X射线PEEM光束线的高质量聚焦。根据上海光源PEEM光束线的概况,给出微聚焦系统光学元件的基本参数。基于Kirkpatrick-Baez(KB镜)两镜方案,设计了PEEM线微聚焦系统。介绍了KB镜姿态调整机构的设计方案,即利用三垂直线性驱动装置和两水平线性驱动装置相结合来实现五维调节,分析了姿态调节机构的原理与工作过程,给出了微聚焦系统的整体设计方案。测试了KB镜系统的机械性能,给出水平调节机构以及第一面镜子Pitch运动的测试结果,结果显示:水平调节机构分辨率为0.6 μm,重复精度为0.85 μm,Pitch角度分辨率为0.4\",重复精度为0.5\",优于指标要求。其它参数的测试结果亦均优于指标要求。实验表明,微聚焦系统机械指标的实现保证了PEEM线光斑的高质量聚焦。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"A high accuracy micro-focusing system was designed to improve the light spot focusing quality of the X-ray beam-line for Photo-emission Electron Microscope (PEEM) in Shanghai Synchrotron Radiation Facility(SSRF). The layout of PEEM beam-line of the SSRF was introduced and basic parameters of optics of the micro-focusing system were presented. Two Kirkpatrick-Baez mirrors (KB mirror) were adopted to finish the design of micro-focusing system. The design scheme of a key component-posture adjusting mechanism in the system was introduced. Namely, a three vertical linear driving equipment and a two horizontal linear driving device were combined to implement five-dimensional adjustment of the system. The working principle and process of the posture adjusting mechanism were introduced, and the overall design scheme of micro-focusing system were analyzed deeply. The mechanical performance of KB mirror system was tested, and the testing results of the horizontal adjusting mechanism and the pitch motion of first mirror were given. That the resolution and repeat accuracy of horizontal adjusting mechanism are 0.6 μm and 0.85 μm respectively, and those of pitch motion are 0.4\" and 0.5\" respectively, which are better than that of the technical requirements. The other parameters were tested as well, and the results also satisfy the technical requirements. The realization of technical targets of KB mirror system guarantees the high quality focusing of PEEM bean-line."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"同步辐射"}],[{"name":"text","data":"光发射电子显微镜(PEEM)"}],[{"name":"text","data":"X射线显微镜"}],[{"name":"text","data":"KB镜"}],[{"name":"text","data":"结构设计"}]]},{"lang":"en","data":[[{"name":"text","data":"synchrotron radiation"}],[{"name":"text","data":"Photo-emission Electron Microscope(PEEM)"}],[{"name":"text","data":"X-ray microscopy"}],[{"name":"text","data":"KB mirror"}],[{"name":"text","data":"structure design"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"1"}],"title":[{"name":"text","data":"引言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"光发射电子显微镜(Photo-Emission Electron Microscopy,PEEM)是一种功能极为强大的表面成像技术,通过观察样品表面发射的电子,可以获得极高分辨率的表面形貌、化学成分和磁性信息"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。PEEM具有以下主要特点:平行成像,不需要对样品表面进行扫描,成像速度快;配合多种激发源使用,如氦灯、氘灯、X射线源、电子束、离子束、甚至同步辐射光源等;通过选配多种能量分析器,如成像能量分析器(IEF)、微区能量分析器等,PEEM不仅可以获得图像,还可以进行能谱分析"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。同步辐射光源具有高亮度、准直性、相干性、偏振性和宽能量波段等特性,不仅是进行PEEM实验的优先选择,还是获得良好实验结果的有效保证,因此,世界各大同步辐射装置都在建设高性能的PEEM光束线站。"}]},{"name":"p","data":[{"name":"text","data":"上海光源梦之线的建设目标是建设一条宽能段、超高能量分辨率的软X射线光束线,它有ARPES和PEEM两个实验站。PEEM实验站的能量为20~2 000 eV,聚焦光斑大小为5.2 μm×2.2 μm。为了能够实现宽能段、高分辨和较小的聚焦光斑,对梦之线各个部件的性能提出了近乎苛刻的要求。其中的一个关键部件是微聚焦系统,用于将单色光聚焦于样品处。为了保证微聚焦系统的性能,并兼顾经济条件,采用Kirkpatrick-Baez (KB)镜聚焦系统,可获得几微米的聚焦光斑。鉴于KB镜系统的重要性,近年来国内外各大同步辐射装置及相关研究机构对KB镜系统进行了大量研究。Patrick P.Naulleau等人研究了一种KB光学元件原位扫描狭缝调试系统"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"2","type":"bibr","rid":"b2","data":[{"name":"text","data":"2"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。S.Matsuyama等人对先进KB光学元件的四镜调试系统进行模拟研究"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"3","type":"bibr","rid":"b3","data":[{"name":"text","data":"3"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。Gene E. Ice等人研究了热中子KB微聚焦光学元件以及高性能的KB超级镜"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"5","type":"bibr","rid":"b5","data":[{"name":"text","data":"5"}]}}],"rid":["b4","b5"],"text":"4-5","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。C.Rau等人对锥形光束低于100 nm聚焦尺寸的KB镜进行了研究"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"6","type":"bibr","rid":"b6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。在国内,王占山等人对X射线KB显微成像系统的光学设计、成像质量、分辨率模型以及反射镜研制等内容进行探讨和研究"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"7","type":"bibr","rid":"b7","data":[{"name":"text","data":"7"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"8","type":"bibr","rid":"b8","data":[{"name":"text","data":"8"}]}}],"rid":["b7","b8"],"text":"7-8","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"由于KB镜系统是梦之线的关键部件,KB镜系统性能的优劣直接影响到光束线的整体性能。上海光源能够提供高光子通量、高光谱分辨和高空间分辨,而单色光聚焦光斑尺寸非常小,KB镜的姿态对于聚焦光斑的大小至关重要,因此,对KB镜系统的设计、加工、安装和调试都提出了非常高的要求。本文在介绍梦之线基本概况的基础上,研究了PEEM微聚焦系统的设计方案,并对微聚焦系统的性能进行了测试。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2"}],"title":[{"name":"text","data":"PEEM光束线概况"}],"level":"1","id":"s2"}},{"name":"p","data":[{"name":"text","data":"PEEM线是上海光源梦之线的一个分支,其光学布局如"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"所示。考虑到锯齿墙与光源的距离约为18 m,因此四刀狭缝的位置选为距光源20 m处,用来定义整条光束线的接收角。对于不同的光栅,根据对通量和能量分辨率的要求来选择四刀狭缝的开度。四刀狭缝吸收了大部分的热负载,因此需要采用水冷。22 m处是一块垂直放置的平面镜M1,主要用于吸收热负载和抑制高次谐波。减小掠入射角可以提高样品处的光子通量,但是会增大第二块平面镜上的热负载,同时会降低谐波抑制能力。综合考虑,掠入射角取为1.2°。由于M1的热负载很大,因此需要内部水冷。27 m处是SX700型平面光栅单色仪,采用变线距的平面光栅,共有4块光栅,可以沿横向进行切换,分别用于不同的能量范围和分辨率要求。1块平面镜表面分为2个镀层区域,分别是Ni和Au镀层。29.59 m处是一块垂直放置的平面偏转镜,表面镀金,用于将光偏转到PEEM分支线,偏转角是2.5°。45 m处分别是ARPES线和PEEM线的单色光狭缝。由于在狭缝之前光束在水平方向没有聚焦,因此狭缝的水平开口很大,取固定值15 mm,垂直开口可调。由于狭缝水平刀口很长,为防止热负载引起刀口形变,采用水冷。在两个单色光狭缝之后,分别采用一对KB镜将单色光聚焦到各自的样品处,由于PEEM实验站比ARPES实验站的光斑要求更小,因此将PEEM实验站放置在ARPES实验站之后,增大PEEM线KB镜的物距,从而减小样品处的光斑。"}]},{"name":"fig","data":{"id":"Figure1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"text","data":"梦之线布局"}]},{"lang":"en","label":[{"name":"text","data":"Fig 1"}],"title":[{"name":"text","data":"Layout of dreamline"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752433&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752433&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752433&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"PEEM线KB镜系统的第一面镜子水平放置,第二面镜子垂直放置,如"},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"所示,其基本参数如"},{"name":"xref","data":{"text":"表 1","type":"table","rid":"Table1","data":[{"name":"text","data":"表 1"}]}},{"name":"text","data":"所示。KB镜成像的基本原理为:光线由光源"},{"name":"italic","data":[{"name":"text","data":"A"}]},{"name":"text","data":"发出,经过两块镜子"},{"name":"italic","data":[{"name":"text","data":"M"}]},{"name":"text","data":"和"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"text","data":"后聚焦于理想像面"},{"name":"italic","data":[{"name":"text","data":"B"}]},{"name":"text","data":",两块反射镜沿光轴放置,如"},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"所示,分别满足成像公式"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"8","type":"bibr","rid":"b8","data":[{"name":"text","data":"8"}]}},{"name":"text","data":"]"}]},{"name":"text","data":":"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"1"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752447&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752447&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752447&type=middle"}}}],"id":"gxjmgc-25-11-2810-E1"}}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"2"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752456&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752456&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752456&type=middle"}}}],"id":"gxjmgc-25-11-2810-E2"}}]},{"name":"table","data":{"id":"Table1","caption":[{"lang":"zh","label":[{"name":"text","data":"表1"}],"title":[{"name":"text","data":"KB镜光学元件的主要参数"}]},{"lang":"en","label":[{"name":"text","data":"Table 1"}],"title":[{"name":"text","data":"Parameters of KB mirrors"}]}],"note":[],"table":[{"head":[[{"style":"class:table_top_border","data":[{"name":"text","data":"名称"}]},{"style":"class:table_top_border","data":[{"name":"text","data":"M3b"}]},{"style":"class:table_top_border","data":[{"name":"text","data":"M4b"}]}]],"body":[[{"style":"class:table_top_border2","data":[{"name":"text","data":"镜面中心到光源的距离/m"}]},{"style":"class:table_top_border2","data":[{"name":"text","data":"48.5"}]},{"style":"class:table_top_border2","data":[{"name":"text","data":"49"}]}],[{"data":[{"name":"text","data":"镜面中心距地面的高度/mm"}]},{"data":[{"name":"text","data":"1 320"}]},{"data":[{"name":"text","data":"1 341.81"}]}],[{"data":[{"name":"text","data":"能量/eV"}]},{"data":[{"name":"text","data":"100~2 000"}]},{"data":[{"name":"text","data":"100~2 000"}]}],[{"data":[{"name":"text","data":"材料"}]},{"data":[{"name":"text","data":"Si"}]},{"data":[{"name":"text","data":"Si"}]}],[{"data":[{"name":"text","data":"入射角/(°)"}]},{"data":[{"name":"text","data":"1.25"}]},{"data":[{"name":"text","data":"1.5"}]}],[{"data":[{"name":"text","data":"长轴/m"}]},{"data":[{"name":"text","data":"(2.5±0.05)"}]},{"data":[{"name":"text","data":"(25±0.5)"}]}],[{"data":[{"name":"text","data":"短轴/m"}]},{"data":[{"name":"text","data":"(0.05±0.001)"}]},{"data":[{"name":"text","data":"(0.183±0.003 66)"}]}],[{"data":[{"name":"text","data":"光学尺寸("},{"name":"italic","data":[{"name":"text","data":"L"}]},{"name":"text","data":"×"},{"name":"italic","data":[{"name":"text","data":"W"}]},{"name":"text","data":")/mm"}]},{"data":[{"name":"text","data":"200×20"}]},{"data":[{"name":"text","data":"400×10"}]}],[{"data":[{"name":"text","data":"镜子尺寸/mm"}]},{"data":[{"name":"text","data":"250×40×50"}]},{"data":[{"name":"text","data":"450×30×40"}]}],[{"data":[{"name":"text","data":"镜子尺寸误差/mm"}]},{"data":[{"name":"text","data":"±0.1"}]},{"data":[{"name":"text","data":"±0.1"}]}],[{"data":[{"name":"text","data":"镀层"}]},{"data":[{"name":"text","data":"Au"}]},{"data":[{"name":"text","data":"Au"}]}],[{"data":[{"name":"text","data":"子午/弧矢面型误差/μrad"}]},{"data":[{"name":"text","data":"0.8/5"}]},{"data":[{"name":"text","data":"2/5"}]}],[{"data":[{"name":"text","data":"粗糙度(RMS)/nm"}]},{"data":[{"name":"text","data":"0.3"}]},{"data":[{"name":"text","data":"0.3"}]}],[{"data":[{"name":"text","data":"冷却方式"}]},{"data":[{"name":"text","data":"侧冷+铜辫"}]},{"data":[{"name":"text","data":"侧冷+铜辫"}]}],[{"style":"class:table_bottom_border","data":[{"name":"text","data":"真空度/Pa"}]},{"style":"class:table_bottom_border","data":[{"name":"text","data":"≤666.61×10"},{"name":"sup","data":[{"name":"text","data":"-10"}]}]},{"style":"class:table_bottom_border","data":[{"name":"text","data":"≤666.61×10"},{"name":"sup","data":[{"name":"text","data":"-10"}]}]}]],"foot":[]}]}},{"name":"fig","data":{"id":"Figure2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"text","data":"KB镜系统原理"}]},{"lang":"en","label":[{"name":"text","data":"Fig 2"}],"title":[{"name":"text","data":"Principle of KB mirror system"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752472&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752472&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752472&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"其中:"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"和"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"分别为两块反射镜的掠入射角,"},{"name":"italic","data":[{"name":"text","data":"R"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"和"},{"name":"italic","data":[{"name":"text","data":"R"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"分别为两块反射镜的曲率半径,"},{"name":"italic","data":[{"name":"text","data":"p"}]},{"name":"text","data":"为光源到反射镜中心的物距,"},{"name":"italic","data":[{"name":"text","data":"q"}]},{"name":"text","data":"为反射镜中心到理想像面的像距。"}]},{"name":"p","data":[{"name":"text","data":"KB镜系统中采用了椭圆柱面镜。两块椭圆柱面镜都是直接加工获得的,其面形误差小于5 μrad,表面粗糙度小于0.3 nm,加工精度已经达到了很高的水平。KB镜的加工精度尽管很高,但还不能保证KB镜系统具有优良的性能,只有结合合理的机械结构以及精密的姿态调节机构,才能使KB镜系统达到预期的效果,获得良好的聚焦能力,为PEEM实验的顺利开展提供高质量的光斑。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3"}],"title":[{"name":"text","data":"KB镜系统设计"}],"level":"1","id":"s3"}},{"name":"p","data":[{"name":"text","data":"对于KB镜系统而言,除两块高精度椭圆柱面反射镜外,两块反射镜的姿态调节机构是另一关键点。在梦之线KB镜系统中,每一块反射镜都需要独立进行五维调节,而且两块反射镜的间距非常近,这对KB镜系统的结构设计提出了很高的要求。在本文中,KB镜的姿态调节机构采用真空内调节与真空外馈入调节相结合的方式来实现。梦之线KB镜的关键指标是姿态定位精度和姿态恢复精度,前者主要与镜子的位移调节分辨率和角度调节分辨率有关,后者主要与位移调节的重复精度和角度调节的重复精度有关。根据梦之线PEEM实验站的整体性能要求,两块KB镜的位移调节分辨率应小于1 μm,重复精度应小于5 μm。第一面镜子的角度调节分辨率为:滚角方向(Roll)和摆角方向(Yaw)小于1″,投角方向(Pitch)小于0.5″;重复精度小于5″。第二面镜子的角度调节分辨率为:滚角方向(Roll)和投角方向(Pitch)小于1″,摆角方向(Yaw)小于0.5″;重复精度小于5″。"}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.1"}],"title":[{"name":"text","data":"姿态调整机构"}],"level":"2","id":"s3-1"}},{"name":"p","data":[{"name":"text","data":"KB镜是梦之线的关键部件,其制造和安装过程中产生误差会对光束线的性能产生影响。因此,必须通过性能良好的姿态调整机构来保证KB镜空间位置的精确性。针对KB的特点,采用球面-圆锥面,球面-凹槽面和球面-平面的三点支撑结构来实现KB镜的五维调节。将KB镜安装在KB镜支架上,KB镜支架安装在两层3点支撑结构上,三点的具体位置如"},{"name":"xref","data":{"text":"图 3","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3"}]}},{"name":"text","data":"所示。一层三点支撑结构与三个垂直驱动器("},{"name":"italic","data":[{"name":"text","data":"Z"}]},{"name":"text","data":"方向)联接在一起,另一层三点支撑结构与两个水平驱动器("},{"name":"italic","data":[{"name":"text","data":"X"}]},{"name":"text","data":"方向)联接在一起。三个垂直驱动器可以实现KB镜"},{"name":"italic","data":[{"name":"text","data":"Z"}]},{"name":"text","data":"方向,"},{"name":"italic","data":[{"name":"text","data":"R"}]},{"name":"text","data":"-"},{"name":"italic","data":[{"name":"text","data":"X"}]},{"name":"text","data":"方向和"},{"name":"italic","data":[{"name":"text","data":"R"}]},{"name":"text","data":"-"},{"name":"italic","data":[{"name":"text","data":"Y"}]},{"name":"text","data":"方向的调节,两个水平驱动器可以实现KB镜"},{"name":"italic","data":[{"name":"text","data":"X"}]},{"name":"text","data":"方向和"},{"name":"italic","data":[{"name":"text","data":"R"}]},{"name":"text","data":"-"},{"name":"italic","data":[{"name":"text","data":"Z"}]},{"name":"text","data":"方向的调节。姿态调整机构的设计方案如"},{"name":"xref","data":{"text":"图 4","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure3","caption":[{"lang":"zh","label":[{"name":"text","data":"图3"}],"title":[{"name":"text","data":"点槽面支撑系统示意图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 3"}],"title":[{"name":"text","data":"Schematic diagram of point-groove-plane support system"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752487&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752487&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752487&type=middle"}]}},{"name":"fig","data":{"id":"Figure4","caption":[{"lang":"zh","label":[{"name":"text","data":"图4"}],"title":[{"name":"text","data":"姿态调整机构设计方案"}]},{"lang":"en","label":[{"name":"text","data":"Fig 4"}],"title":[{"name":"text","data":"Design scheme of posture adjusting mechanism"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752502&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752502&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752502&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"为了便于装配,以及实时调整KB的姿态,三个垂直驱动器放置在真空腔外面,两个水平驱动器放置在真空腔内。无论是垂直驱动器,还是水平驱动器,都是采用步进电机驱动滚柱丝杠转动来实现精密位移的输出。垂直驱动器的行程为-25~25 mm,水平驱动器的行程为-20~20 mm,两种驱动器都配备了雷尼绍光栅尺对其进行闭环控制。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2"}],"title":[{"name":"text","data":"KB镜聚焦系统的整体结构"}],"level":"2","id":"s3-2"}},{"name":"p","data":[{"name":"xref","data":{"text":"图 5","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5"}]}},{"name":"text","data":"是PEEM KB镜系统的结构设计图,其核心部分是两面镜子的支撑结构和姿态调节机构。对于姿态调节机构而言,两水平线性驱动装置位于超高真空内,三个垂直线性驱动装置位于超高真空外,所以,两水平线性驱动装置要具备真空兼容性,三垂直线性驱动装置要具备真空馈入性。为了保证X射线的光通量和其它性能,PEEM KB镜系统要工作在133.322×10"},{"name":"sup","data":[{"name":"text","data":"-10"}]},{"name":"text","data":" Pa的真空环境中,所以,真空腔内的零件全部按照超高真空规范进行设计和加工,编码器采用超高真空高精度光栅尺。为了保证KB镜的面形精度,两面KB镜都配备了冷却装置,以保证在最短时间内达到热平衡。"}]},{"name":"fig","data":{"id":"Figure5","caption":[{"lang":"zh","label":[{"name":"text","data":"图5"}],"title":[{"name":"text","data":"PEEM KB镜系统的整体设计方案"}]},{"lang":"en","label":[{"name":"text","data":"Fig 5"}],"title":[{"name":"text","data":"Design scheme of PEEM KB mirror system"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752517&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752517&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752517&type=middle"}]}}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4"}],"title":[{"name":"text","data":"KB镜系统的性能测试"}],"level":"1","id":"s4"}},{"name":"p","data":[{"name":"xref","data":{"text":"图 6","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6"}]}},{"name":"text","data":"为梦之线PEEM KB镜系统装配后的照片。为了满足梦之线的整体性能要求,需要对KB镜系统的主要技术参数进行测试,主要包括KB镜的位移分辨率和重复精度,以及角度分辨率和重复精度。在实际工作中,对KB镜所有线性驱动装置的线性分辨率和重复精度,以及KB镜姿态调节机构的角度分辨率和重复精度都进行了测试。这里给出第一面镜子的测试结果。线性分辨率和重复精度采用Agilent5529A型号激光干涉仪进行测试,角度分辨率和重复精度采用ELCOMAT 3000型号自准直仪进行测试"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"10","type":"bibr","rid":"b10","data":[{"name":"text","data":"10"}]}}],"rid":["b9","b10"],"text":"9-10","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"fig","data":{"id":"Figure6","caption":[{"lang":"zh","label":[{"name":"text","data":"图6"}],"title":[{"name":"text","data":"PEEM KB镜系统照片"}]},{"lang":"en","label":[{"name":"text","data":"Fig 6"}],"title":[{"name":"text","data":"Photo of PEEM KB mirror system"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752532&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752532&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752532&type=middle"}]}},{"name":"p","data":[{"name":"xref","data":{"text":"图 7","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7"}]}},{"name":"text","data":"是水平调节机构的测试结果。为了得到其分辨率,对线性驱动装置行程范围内的5个位置进行测试,通过控制程序设定步长为0.5 μm,每走一步,记录激光干涉仪的读数差值,共走十步。在0,5,10和20 mm的位置,最大平均差值为0.6 μm,因此,可以认为垂直线性驱动装置在步长0.5 μm时的分辨率为0.6 μm。除分辨率外,重复精度是水平调节机构的另一项重要指标,它保证了在调节过程中线性驱动装置的位置恢复能力。对行程范围内的8个位置进行测试,由于测试系统存在系统线性误差,所以,测试结果为去除系统线性误差之后的数据。分别取这8组数据的标准偏差,其中最大值为0.85 μm,将其作为重复精度。"}]},{"name":"fig","data":{"id":"Figure7","caption":[{"lang":"zh","label":[{"name":"text","data":"图7"}],"title":[{"name":"text","data":"水平调节机构的测试结果"}]},{"lang":"en","label":[{"name":"text","data":"Fig 7"}],"title":[{"name":"text","data":"Testing results of horizontal adjusting mechanism"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752547&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752547&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752547&type=middle"}]}},{"name":"p","data":[{"name":"xref","data":{"text":"图 8(a)","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8(a)"}]}},{"name":"text","data":"是第一面镜子投角的测试结果。角度分辨率测量选择三个不同位置,设定步长为0.000 1°,每走一步,记录自准直仪读数的差值。0°时,平均值为0.4″;1°时,平均值为0.37″;2°时,平均值为0.4″,所以,投角的分辨率在步长0.000 1°时为0.4″。采用自准直仪分别对-0.5°,0°,0.5°,1°和1.5°位置进行重复精度测试,"},{"name":"xref","data":{"text":"图 8(b)","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8(b)"}]}},{"name":"text","data":"是自准直仪读数去除系统线性因素之后的数据,分别取这五组数据的标准偏差,其中最大值为0.50″,将其作为重复精度。"}]},{"name":"fig","data":{"id":"Figure8","caption":[{"lang":"zh","label":[{"name":"text","data":"图8"}],"title":[{"name":"text","data":"第一面镜子的投角测试结果"}]},{"lang":"en","label":[{"name":"text","data":"Fig 8"}],"title":[{"name":"text","data":"Testing results of pitch motion of first mirror"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752558&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752558&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1752558&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"由测试结果可以看出,线性驱动装置和投角的分辨率和重复精度满足要求。其他参数的测试过程与此类似,测试结果均优于技术指标要求。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"5"}],"title":[{"name":"text","data":"结论"}],"level":"1","id":"s5"}},{"name":"p","data":[{"name":"text","data":"本文对上海光源X射线PEEM光束线微聚焦系统进行研制,给出了其关键部件KB镜的姿态调整机构方案,即三垂直线性驱动装置和两水平线性驱动装置相结合实现五维调节的方案。分析了姿态调节机构的原理与工作过程,给出了微聚焦系统的整体设计方案。测试了微聚焦系统的机械性能,结果表明:水平调节机构的分辨率为0.6 μm,重复精度为0.85 μm,第一面镜子的投角分辨率为0.4″,重复精度为0.5″,优于指标要求。微聚焦系统机械指标的完成为PEEM线光斑的高质量聚焦提供了保障。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"b1","label":"1","citation":[{"lang":"zh","text":[{"name":"text","data":"光发射电子显微镜[EB/OL]."},{"name":"extlink","data":{"text":[{"name":"text","data":"http://www.instrument.com.cn/netshow/sh100250/c29168.htm"}],"href":"http://www.instrument.com.cn/netshow/sh100250/c29168.htm"}},{"name":"text","data":". 2012."}]},{"lang":"en","text":[{"name":"text","data":"Photoemission electron microscope[EB/OL]."},{"name":"extlink","data":{"text":[{"name":"text","data":"http://www.instrument.com.cn/netshow/sh100250/c29168.htm"}],"href":"http://www.instrument.com.cn/netshow/sh100250/c29168.htm"}},{"name":"text","data":". 2012. (in Chinese)"}]}]},{"id":"b2","label":"2","citation":[{"lang":"en","text":[{"name":"text","data":"NAULLEAUP P, BATSON P, DENHAM P, et al.. An in situ scanning-slit alignment system for Kirkpatrick-Baez optics[J]. Optics Communications, 2002, 212(4-6):225-233."}]}]},{"id":"b3","label":"3","citation":[{"lang":"en","text":[{"name":"text","data":"MATSUYAMAS, FUJⅡ M, YAMAUCHI K. Simulation study of four-mirror alignment of advanced Kirkpatrick-Baez optics[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 616(2-3):241-245."}]}]},{"id":"b4","label":"4","citation":[{"lang":"en","text":[{"name":"text","data":"ICEG E, HUBBARD C R, LARSON B C, et al.. Kirkpatrick-Baez microfocusing optics for thermal neutrons[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 539(1-2):312-320."}]}]},{"id":"b5","label":"5","citation":[{"lang":"en","text":[{"name":"text","data":"ICE GE, HUBBARD C R, LARSON B C, et al.. High-performance Kirkpatrick-Baez supermirrors for neutron milli-and micro-beams[J]. Materials Science and Engineering:A, 2006, 437(1):120-125."}]}]},{"id":"b6","label":"6","citation":[{"lang":"en","text":[{"name":"text","data":"RAU C, LIU W. Cone-beam imaging with sub-100 nm focal-sized Kirkpatrick-Baez mirrors[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 582(1):132-134."}]}]},{"id":"b7","label":"7","citation":[{"lang":"zh","text":[{"name":"text","data":"穆宝忠, 伊圣振, 黄圣铃, 等. ICF用Kirkpatrick-Baez型显微镜光学设计[J].强激光与粒子束, 2008, 20(3):409-412."}]},{"lang":"en","text":[{"name":"text","data":"MU B ZH, YI SH ZH, HUANG SH L, et al.. Optical design of Kirkpatrick-Baez microscope for ICF[J]. High Power Laser and Particle Beams, 2008, 20(3):409-412. (in Chinese)"}]}]},{"id":"b8","label":"8","citation":[{"lang":"zh","text":[{"name":"text","data":"潘宁宁, 王占山, 顾春时, 等. X射线用Kirkpatrick-Baez显微镜成像质量的研究[J].强激光与粒子束, 2006, 18(1):61-65."}]},{"lang":"en","text":[{"name":"text","data":"PAN N N, WANG ZH SH, GU CH SH, et al.. Image quality with Kirkpatrick-Baez microscope in hard X-ray[J]. High Power Laser and Particle Beams, 2006, 18(1):61-65. (in Chinese)"}]}]},{"id":"b9","label":"9","citation":[{"lang":"zh","text":[{"name":"text","data":"于海, 万秋华, 卢新然, 等.光电编码器误差检测转台的动态精度标定[J].光学 精密工程, 2016, 24(11):2699-2704."}]},{"lang":"en","text":[{"name":"text","data":"YU H, WAN Q H, LU X R, et al.. Calibration of dynamic precision for measurement platform of photoelectric encoder[J]. Opt. Precision Eng., 2016, 24(11):2699-2704. (in Chinese)"}]}]},{"id":"b10","label":"10","citation":[{"lang":"zh","text":[{"name":"text","data":"刘书桂, 宋宣晓, 韩振华.球形靶标中心成像点的高精度定位[J].光学 精密工程, 2016, 24(8):1861-1870."}]},{"lang":"en","text":[{"name":"text","data":"LIU SH G, SONG X X, HAN ZH H. High-precision positioning of projected point of spherical target center[J]. Opt. Precision Eng., 2016, 24(8):1861-1870. (in Chinese)"}]}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.3788/OPE.20172511.2810","clc":[[{"name":"text","data":"TH742.9;TN305.7"}]],"dc":[],"publisherid":"gxjmgc-25-11-2810","citeme":[],"fundinggroup":[{"lang":"zh","text":[{"name":"text","data":"国家自然科学基金资助项目(No.61404139);应用光学国家重点实验室自主基金资助项目(No.Y5743FQ158);吉林省重点科技成果转化项目(No.20150307039GX)"}]}],"history":{"received":"2017-03-27","accepted":"2017-05-08","ppub":"2017-11-25","opub":"2020-06-16"},"copyright":{"data":[{"lang":"zh","data":[{"name":"text","data":"版权所有©《光学 精密工程》编辑部 2017"}],"type":"copyright"},{"lang":"en","data":[{"name":"text","data":"Copyright ©2017 Optics and Precision Engineering. All rights reserved."}],"type":"copyright"}],"year":"2017"}},"appendix":[],"type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"光学 精密工程","issue":"11","volume":"25","originalSource":[]}