{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"氮化镓基异质结构光子晶体微腔特性研究"}]},{"lang":"en","data":[{"name":"text","data":"Study on the characteristics of Gallium Nitride based hetero-structure photonic crystal micro-cavity"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"沈","givenname":"威","namestyle":"eastern","prefix":""},{"lang":"en","surname":"SHEN","givenname":"Wei","namestyle":"eastern","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":["first-author"],"bio":[{"lang":"zh","text":["沈 威(1998-),男,湖北孝感人,硕士研究生,2020年于长江大学获得学士学位,主要从事光子晶体激光器的研究。E-mail: 1220013535@njupt.edu.cn"],"graphic":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115707&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115714&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115710&type=","width":"22.01332855","height":"32.00399780","fontsize":""}],"data":[[{"name":"text","data":"沈 威"},{"name":"text","data":"(1998-),男,湖北孝感人,硕士研究生,2020年于长江大学获得学士学位,主要从事光子晶体激光器的研究。E-mail: "},{"name":"text","data":"1220013535@njupt.edu.cn"}]]}],"email":"1220013535@njupt.edu.cn","deceased":false},{"name":[{"lang":"zh","surname":"徐","givenname":"许","namestyle":"eastern","prefix":""},{"lang":"en","surname":"XU","givenname":"Xu","namestyle":"eastern","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"高","givenname":"宏伟","namestyle":"eastern","prefix":""},{"lang":"en","surname":"GAO","givenname":"Hongwei","namestyle":"eastern","prefix":""}],"stringName":[],"aff":[{"rid":"aff2","text":"2"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"刘","givenname":"启发","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LIU","givenname":"Qifa","namestyle":"eastern","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":["corresp"],"corresp":[{"rid":"cor1","lang":"en","text":"E-mail: liuqf@njupt.edu.cn","data":[{"name":"text","data":"E-mail: liuqf@njupt.edu.cn"}]}],"bio":[{"lang":"zh","text":["刘启发(1981-),男,山东淄博人,博士,副教授,硕士生导师,2013年毕业于上海交通大学并取得博士学位,现任职于南京邮电大学通信与信息工程学院,研究方向为微纳光电子器件。E-mail: liuqf@njupt.edu.cn"],"graphic":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115718&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115728&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115722&type=","width":"22.01332855","height":"32.00400543","fontsize":""}],"data":[[{"name":"text","data":"刘启发"},{"name":"text","data":"(1981-),男,山东淄博人,博士,副教授,硕士生导师,2013年毕业于上海交通大学并取得博士学位,现任职于南京邮电大学通信与信息工程学院,研究方向为微纳光电子器件。E-mail: "},{"name":"text","data":"liuqf@njupt.edu.cn"}]]}],"email":"liuqf@njupt.edu.cn","deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"1","text":"南京邮电大学 通信与信息工程学院,江苏 南京 210003","data":[{"name":"text","data":"南京邮电大学 通信与信息工程学院,江苏 南京 210003"}]},{"lang":"en","label":"1","text":"College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China","data":[{"name":"text","data":"College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China"}]}]},{"id":"aff2","intro":[{"lang":"zh","label":"2","text":"中国科学院 苏州纳米技术与纳米仿生研究所,江苏 苏州 215123","data":[{"name":"text","data":"中国科学院 苏州纳米技术与纳米仿生研究所,江苏 苏州 215123"}]},{"lang":"en","label":"2","text":"Key Laboratory of Nano devices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China","data":[{"name":"text","data":"Key Laboratory of Nano devices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"本论文提出了氮化镓基有源体系的异质结构光子晶体谐振腔,以实现高品质因子和小模场体积的有源集成蓝光谐振。通过能带分析,明确了异质结构光子晶体谐振腔的工作机理。基于光子晶体的能带带边和带隙原理,实现了光子面内反馈、高品质因子谐振和面外垂直发射。基于时域有限差分方法,研究了核心区和包层区不同谐振腔参数下的谐振特性。讨论了微腔结构与谐振品质因子、腔损耗、谐振频率及模场体积等的影响关系。研究表明,通过异质结构可以有效地降低面内谐振损耗,实现了有源集成型蓝光波段的Purcell因子达到769,模场体积为0.7("},{"name":"italic","data":[{"name":"text","data":"λ"}]},{"name":"text","data":"/n)"},{"name":"sup","data":[{"name":"text","data":"3"}]},{"name":"text","data":"。该研究为蓝光波段高"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"/"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"m"}]},{"name":"text","data":"谐振腔的设计开辟了道路,同时为具备优异谐振特性的异质结构光子晶体微腔的研究奠定了方法和理论基础。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"This paper proposes a two-dimensional heterostructure photonic crystal on a GaN-based active platform for achieving a resonant microcavity in the blue band with a high quality ("},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":") factor and small mode volume ("},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"m"}]},{"name":"text","data":"). The working mechanism of the heterostructure photonic crystal resonator is explained through band structure analysis. Based on the band edge and band gap principles applicable to photonic crystals, photonic in-plane feedback, a high "},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":" factor resonance, and out-of-plane vertical emission are realized. The resonance characteristics of the core and cladding regions using different cavity parameters are studied by finite difference time domain (FDTD) simulation. The relationships among the microcavity structure and the resonance "},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":" factor, cavity loss, resonance frequency, and "},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"m"}]},{"name":"text","data":" are discussed. These findings pave the way for designing high-"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"/"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"m"}]},{"name":"text","data":" resonators in the blue band and establishing a method with a theoretical basis for studying heterostructure photonic crystal microcavities with excellent resonance characteristics."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"异质结构光子晶体微腔"}],[{"name":"text","data":"有限时域差分"}],[{"name":"text","data":"品质因子"}],[{"name":"text","data":"模场体积"}],[{"name":"text","data":"面内反馈"}]]},{"lang":"en","data":[[{"name":"text","data":"hetero-structure photonic crystal micro-cavity"}],[{"name":"text","data":"finite difference time domain"}],[{"name":"text","data":"quality factor"}],[{"name":"text","data":"mode volume"}],[{"name":"text","data":"in-plane feedback"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"1 引 言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"二维光子晶体通过周期性结构的两个基本特性—光子带隙和慢光模式,形成光子晶体谐振腔,利用这种微腔制作的光波导、滤波器、激光器和传感器等"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"1","type":"bibr","rid":"R1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"3","type":"bibr","rid":"R3","data":[{"name":"text","data":"3"}]}}],"rid":["R1","R2","R3"],"text":"1-3","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":",都呈现出了更好的模式特性和高的频率选择性。2003年,日本京都大学Noda小组"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"4","type":"bibr","rid":"R4","data":[{"name":"text","data":"4"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"报道了一种缺陷型光子晶体微腔,通过微调腔内孔的位置使得腔内电磁场在光子晶体边界处的散射减小,最小化能量泄漏,在无源器件上获得了高达45 000的品质因子。在此启发下,人们对“缺陷”的概念有了新的认识,光子晶体的缺陷不仅是去掉某些空气孔,还可以采用异质光子晶体结构。"}]},{"name":"p","data":[{"name":"text","data":"异质结构光子晶体微腔通过核心区的二级衍射使得满足晶格常数条件的频率光形成面内谐振,这些方向的光发生耦合从而形成驻波。利用包层区的带隙反射增强原理形成对核心区带边模式光子晶体谐振的面内反馈。V.Giannopoulos等"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"5","type":"bibr","rid":"R5","data":[{"name":"text","data":"5"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"报道了一种基于InP的光子晶体异质结构微腔激光器,通过连接两个不同的光子晶体结构而形成,内部晶格的能带图的临界点位于周围晶格的带隙内,对中心区慢光模式的反馈实现了较低的阈值和单模式特性。Xiaochen Ge等"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"6","type":"bibr","rid":"R6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"报道了一种基于Si"},{"name":"sub","data":[{"name":"text","data":"3"}]},{"name":"text","data":"N"},{"name":"sub","data":[{"name":"text","data":"4"}]},{"name":"text","data":"的异质结构光子晶体微腔,不同区域孔半径的模式间隙提供了横向限制。在具有更紧凑的有源区的设计中可以实现高品质因子和更小的面内泄漏。Noda等"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"7","type":"bibr","rid":"R7","data":[{"name":"text","data":"7"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"设计了一种基于GaAs的光子晶体面发射激光器,通过引入两个具有不同带隙的光子晶体结构所组成的面内异质结构,利用带边处的光反馈以及两个光子晶体边界处的反射实现激光模式的强面内限制,在9 μm直径内实现单模激光工作,并具有大于40 GHz的3 dB调制带宽。"}]},{"name":"p","data":[{"name":"text","data":"异质结构光子晶体微腔利于实现高品质因子("},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":")和小模场体积("},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"m"}]},{"name":"text","data":")的光子谐振,同时具备对腔体大小、模场体积和品质因子的可调控。且其不需要打开完整的带隙,从而对折射率对比度的要求会降低"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"8","type":"bibr","rid":"R8","data":[{"name":"text","data":"8"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"9","type":"bibr","rid":"R9","data":[{"name":"text","data":"9"}]}}],"rid":["R8","R9"],"text":"8-9","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":",适合应用于材料折射率差小的可见光波段中。GaN具有直接带隙、易发光、热导率高、耐高温、耐酸碱、硬度高等优良的光电和物理性能"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"10","type":"bibr","rid":"R10","data":[{"name":"text","data":"10"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"11","type":"bibr","rid":"R11","data":[{"name":"text","data":"11"}]}}],"rid":["R10","R11"],"text":"10-11","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。通过改变氮化物中In,Ga,Al的含量,可以覆盖0.63~6.2 eV的连续禁带宽度,故可制备紫外、可见光至红外光波段的发光二极管、激光器和其他光电子和光通信技术中使用的器件"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"12","type":"bibr","rid":"R12","data":[{"name":"text","data":"12"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"13","type":"bibr","rid":"R13","data":[{"name":"text","data":"13"}]}}],"rid":["R12","R13"],"text":"12-13","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"本文提出了基于GaN有源材料体系的异质结构光子晶体微腔,利用时域有限差分方法(Finite Difference Time Domain, FDTD)对其谐振特性进行了研究,通过开展细致化的核心区和包层区光子晶体结构优化,研究晶格常数"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":"、孔半径"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"text","data":"、孔深度"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"text","data":"等参数对谐振波长、"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"值和"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"m"}]},{"name":"text","data":"的影响,优化出通过不同光子晶体参数结构形成带隙以进行面内谐振的侧向限制,和利用核心区光子晶体的带边理论"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"14","type":"bibr","rid":"R14","data":[{"name":"text","data":"14"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"面外提取发射的谐振微腔结构。该研究可以为GaN基高效率、低阈值、高速调制特性面发射激光器的理论和设计提供思路和基础。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"2 结构及能带分析"}],"level":"1","id":"s2"}},{"name":"p","data":[{"name":"text","data":"本研究提出的GaN基异质结构光子晶体谐振腔模型俯视图如"},{"name":"xref","data":{"text":"图1","type":"fig","rid":"F1","data":[{"name":"text","data":"图1"}]}},{"name":"text","data":"(a)所示(彩图见期刊电子版),图中蓝色区域为GaN,灰色圆柱区域是空气孔。光子晶体分为核心区和包层区,它们具有相同的晶格常数和不同的圆形空气孔半径("},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"和"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":")。"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"和"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"分别为核心区和包层区孔的行列数。"},{"name":"xref","data":{"text":"图1","type":"fig","rid":"F1","data":[{"name":"text","data":"图1"}]}},{"name":"text","data":"(b)为结构的侧视图,结构由下至上为"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"-GaN层(厚度100 nm)、9对InGaN 量子阱层(垒层GaN 10 nm/阱层InGaN 3 nm)、"},{"name":"italic","data":[{"name":"text","data":"p"}]},{"name":"text","data":"-AlGaN层(厚度35 nm)、"},{"name":"italic","data":[{"name":"text","data":"p"}]},{"name":"text","data":"-GaN层(厚度80 nm)和在其上开孔形成的异质结构光子晶体层(厚度"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"text","data":")。将周围空气的折射率定义为1,将GaN和AlGaN的折射率定义为2.4,InGaN折射率为2.46。"}]},{"name":"fig","data":{"id":"F1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"text","data":"结构示意图以及能带图"}]},{"lang":"en","label":[{"name":"text","data":"Fig.1"}],"title":[{"name":"text","data":"Structure schematic and energy band diagram"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115732&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115741&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115737&type=","width":"75.01467133","height":"131.69900513","fontsize":""}]}},{"name":"p","data":[{"name":"text","data":"利用平面波展开法"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"15","type":"bibr","rid":"R15","data":[{"name":"text","data":"15"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"16","type":"bibr","rid":"R16","data":[{"name":"text","data":"16"}]}}],"rid":["R15","R16"],"text":"15-16","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"绘制了该结构的TE模式能带图("},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"=0.31"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"=0.26"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":"=194 nm),如"},{"name":"xref","data":{"text":"图1","type":"fig","rid":"F1","data":[{"name":"text","data":"图1"}]}},{"name":"text","data":"(c)所示。由于核心区和包层区之间有效折射率和模式均不匹配,两个区域的模式将不会发生耦合,形成能带结构中"},{"name":"italic","data":[{"name":"text","data":"Γ"}]},{"name":"text","data":"点附近的带隙"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"17","type":"bibr","rid":"R17","data":[{"name":"text","data":"17"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。从"},{"name":"xref","data":{"text":"图1","type":"fig","rid":"F1","data":[{"name":"text","data":"图1"}]}},{"name":"text","data":"中还可以看出,该正方晶格结构没形成完整的带隙,但利用"},{"name":"italic","data":[{"name":"text","data":"Γ"}]},{"name":"text","data":"点附近的带边(在"},{"name":"italic","data":[{"name":"text","data":"Γ"}]},{"name":"text","data":"点,核心区和包层区的光子晶体都形成了带边,核心区对应的波长约为450 nm),可以实现面内谐振和面外提取,这样的原理结构意味着对微腔折射率对比度的要求会降低,也不需要像缺陷型微腔那样具有高折射率对比度的悬空结构,从而利于电泵浦实现及具有好的散热性。另外,由于在"},{"name":"italic","data":[{"name":"text","data":"Γ"}]},{"name":"text","data":"点反射的选择性,其更易于实现单模特性,对结构参数冗余很大。通过选择核心区域中的半径大于空腔的其他区域中的半径,核心区域中该点附近的模式将具有更高的频率,这阻止了它与包层区域中的类似模式耦合。由于有效折射率和模式的不匹配,模式间隙中核心区模式与具有相同频率的高阶包层模式之间的耦合会很小。因此,在这种异质结构中,腔模可以被高"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"伪连续域束缚态(Bound-states In the Continuum, BIC)垂直限制在结构中"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"6","type":"bibr","rid":"R6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":","},{"name":"xref","data":{"text":"18","type":"bibr","rid":"R18","data":[{"name":"text","data":"18"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",而被模式间隙横向限制在核心区中。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"3 结果与讨论"}],"level":"1","id":"s3"}},{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"3.1 无限面积光子晶体的谐振特性"}],"level":"2","id":"s3a"}},{"name":"p","data":[{"name":"text","data":"谐振腔品质因子为横向品质因子和垂直品质因子的叠加"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"19","type":"bibr","rid":"R19","data":[{"name":"text","data":"19"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",如"},{"name":"xref","data":{"text":"公式(1)","type":"disp-formula","rid":"DF1","data":[{"name":"text","data":"公式(1)"}]}},{"name":"text","data":"所示:"}]},{"name":"dispformula","data":{"label":[{"name":"text","data":"(1)"}],"data":[{"name":"math","data":{"math":"","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115749&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115744&type=","width":"24.12999916","height":"8.80533314","fontsize":""}}},{"name":"text","data":","}],"id":"DF1"}},{"name":"p","data":[{"name":"text","data":"式中:"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115755&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115751&type=","width":"4.65666676","height":"4.14866638","fontsize":""}}}]},{"name":"text","data":"代表横向品质因子用来衡量面内损耗,"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115779&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115777&type=","width":"4.74133301","height":"4.14866638","fontsize":""}}}]},{"name":"text","data":"代表垂直品质因子用来衡量面外损耗。"}]},{"name":"p","data":[{"name":"text","data":"当光子晶体微腔面积足够大时,面内损耗近似为0,此时"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115786&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115782&type=","width":"2.87866688","height":"3.21733332","fontsize":""}}}]},{"name":"text","data":"="},{"name":"inlineformula","data":[{"name":"math","data":{"math":"","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115779&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115777&type=","width":"4.74133301","height":"4.14866638","fontsize":""}}}]},{"name":"text","data":","},{"name":"inlineformula","data":[{"name":"math","data":{"math":"","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115786&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115782&type=","width":"2.87866688","height":"3.21733332","fontsize":""}}}]},{"name":"text","data":"只反映垂直损耗。"}]},{"name":"p","data":[{"name":"text","data":"单独研究核心区"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":"这3个参量对光子晶体谐振特性的影响,结果如"},{"name":"xref","data":{"text":"图2","type":"fig","rid":"F2","data":[{"name":"text","data":"图2"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"F2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":"对光子晶体谐振特性的影响"}]},{"lang":"en","label":[{"name":"text","data":"Fig.2"}],"title":[{"name":"text","data":"Effect of "},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"text","data":" and "},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":" on resonant characteristics of photonic crystal"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115791&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115799&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115795&type=","width":"160.02000427","height":"110.82865906","fontsize":""}]}},{"name":"p","data":[{"name":"text","data":"固定"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"text","data":"=20 nm,"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":"=194 nm,空气孔半径"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"text","data":"取52~66 nm,研究步长2 nm,网格精度为"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":"/64,研究"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"text","data":"与谐振波长和"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"的关系,结果如图"},{"name":"xref","data":{"text":"2","type":"fig","rid":"F2","data":[{"name":"text","data":"2"}]}},{"name":"text","data":"(a)和"},{"name":"xref","data":{"text":"2","type":"fig","rid":"F2","data":[{"name":"text","data":"2"}]}},{"name":"text","data":"(d)所示。空气孔半径"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"text","data":"的增大使有效介电常数减小,从而使归一化频率增大,波长减小,但影响很小。随着"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"text","data":"的增大,微腔的垂直损耗增大。受制于目前的微纳加工工艺,并不能制作太小空气孔,同时减小空气孔半径,会导致带隙减小,制作的冗余度会减小。所以本研究考虑现实可行,研究"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"text","data":"最低50 nm左右。"}]},{"name":"p","data":[{"name":"text","data":"固定"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"text","data":"=20 nm,"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"text","data":"=60 nm,晶格常数"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":"取186~198 nm,研究步长2 nm,研究"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":"与谐振波长和"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"的关系,结果如图"},{"name":"xref","data":{"text":"2","type":"fig","rid":"F2","data":[{"name":"text","data":"2"}]}},{"name":"text","data":"(b)和"},{"name":"xref","data":{"text":"2","type":"fig","rid":"F2","data":[{"name":"text","data":"2"}]}},{"name":"text","data":"(e)所示。从"},{"name":"xref","data":{"text":"图2","type":"fig","rid":"F2","data":[{"name":"text","data":"图2"}]}},{"name":"text","data":"可以看出晶格常数"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":"的增大使有效介电常数增大,从而使归一化频率减小,波长增大,同时"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"值随着"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":"增大而增大,增长幅度逐渐减小。"}]},{"name":"p","data":[{"name":"text","data":"固定"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":"=194 nm,"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"text","data":"=60 nm,光子晶体厚度"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"text","data":"取17~24 nm,研究步长1 nm,研究"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"text","data":"与谐振波长和"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"的关系,结果如图"},{"name":"xref","data":{"text":"2","type":"fig","rid":"F2","data":[{"name":"text","data":"2"}]}},{"name":"text","data":"(c)和"},{"name":"xref","data":{"text":"2","type":"fig","rid":"F2","data":[{"name":"text","data":"2"}]}},{"name":"text","data":"(f)所示。从"},{"name":"xref","data":{"text":"图2","type":"fig","rid":"F2","data":[{"name":"text","data":"图2"}]}},{"name":"text","data":"(c)可以看出微腔厚度的增大导致相对于衬底有效介电常数减小从而谐振波长逐渐减小,"},{"name":"xref","data":{"text":"图2","type":"fig","rid":"F2","data":[{"name":"text","data":"图2"}]}},{"name":"text","data":"(f)可见随着微腔厚度增加,"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"值下降。这是因为高阶的纵模只需花费很小的能量就能够被建立,这些模式的能量稍微高于最低阶模,阻止了带隙的形成,在垂直方向会产生许多泄露模式"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"20","type":"bibr","rid":"R20","data":[{"name":"text","data":"20"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"从而导致"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"值下降。如果微腔太薄,在工艺上难以制作,并且会和衬底有较强的相互作用,所以我们选择20 nm厚度进行后续研究。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"3.2 有限面积光子晶体的谐振特性"}],"level":"2","id":"s3b"}},{"name":"p","data":[{"name":"text","data":"众所周知,BIC中受对称性保护的束缚态存在于点"},{"name":"italic","data":[{"name":"text","data":"Г"}]},{"name":"text","data":",具有最大的垂直品质因子。而对于有限结构,大面积的微腔,"},{"name":"italic","data":[{"name":"text","data":"Г"}]},{"name":"text","data":"点附近的伪BIC将为垂直限制提供高的品质因子。基于上一节的研究,固定核心区"},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"text","data":"=20 nm,"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":"=194 nm,"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"text","data":"=60 nm,研究了36 μm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":",81 μm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":",144 μm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":",225 μm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"等一定核心区面积的光子晶体微腔的谐振特性。结果如"},{"name":"xref","data":{"text":"表1","type":"table","rid":"T1","data":[{"name":"text","data":"表1"}]}},{"name":"text","data":"所示。相比于无限面积,有限面积的品质因子大为下降,原因就是产生了很大的面内损耗。"}]},{"name":"table","data":{"id":"T1","caption":[{"lang":"zh","label":[{"name":"text","data":"表1"}],"title":[{"name":"text","data":"不同面积微腔的谐振波长和品质因子"}]},{"lang":"en","label":[{"name":"text","data":"Tab.1"}],"title":[{"name":"text","data":"Resonant wavelength and quality factor of micro-cavities with different areas"}]}],"note":[],"table":[{"head":[[{"align":"center","style":"border-top:solid;border-bottom:solid;","data":[{"name":"text","data":"面积/μm"},{"name":"sup","data":[{"name":"text","data":"2"}]}]},{"align":"center","style":"border-top:solid;border-bottom:solid;","data":[{"name":"text","data":"波长/nm"}]},{"align":"center","style":"border-top:solid;border-bottom:solid;","data":[{"name":"italic","data":[{"name":"text","data":"Q"}]}]},{"align":"center","style":"border-top:solid;border-bottom:solid;","data":[{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"sub","data":[{"name":"text","data":"⊥"}]}]},{"align":"center","style":"border-top:solid;border-bottom:solid;","data":[{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"sub","data":[{"name":"text","data":"∥"}]}]}]],"body":[[{"align":"center","data":[{"name":"text","data":"36"}]},{"align":"center","data":[{"name":"text","data":"446.735"}]},{"align":"center","data":[{"name":"text","data":"90"}]},{"align":"center","data":[{"name":"text","data":"13 000"}]},{"align":"center","data":[{"name":"text","data":"91"}]}],[{"align":"center","data":[{"name":"text","data":"81"}]},{"align":"center","data":[{"name":"text","data":"447.538"}]},{"align":"center","data":[{"name":"text","data":"206"}]},{"align":"center","data":[{"name":"text","data":"13 000"}]},{"align":"center","data":[{"name":"text","data":"265"}]}],[{"align":"center","data":[{"name":"text","data":"144"}]},{"align":"center","data":[{"name":"text","data":"448.531"}]},{"align":"center","data":[{"name":"text","data":"851"}]},{"align":"center","data":[{"name":"text","data":"13 000"}]},{"align":"center","data":[{"name":"text","data":"910"}]}],[{"align":"center","style":"border-bottom:solid;","data":[{"name":"text","data":"225"}]},{"align":"center","style":"border-bottom:solid;","data":[{"name":"text","data":"449.138"}]},{"align":"center","style":"border-bottom:solid;","data":[{"name":"text","data":"906"}]},{"align":"center","style":"border-bottom:solid;","data":[{"name":"text","data":"13 000"}]},{"align":"center","style":"border-bottom:solid;","data":[{"name":"text","data":"974"}]}]],"foot":[]}],"graphics":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115808&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115803&type=","width":"76.90000153","height":"25.87501526","fontsize":""}}},{"name":"p","data":[{"name":"text","data":"从"},{"name":"xref","data":{"text":"表1","type":"table","rid":"T1","data":[{"name":"text","data":"表1"}]}},{"name":"text","data":"可得随着光子晶体面积的增大,模式频率更接近能带图的"},{"name":"italic","data":[{"name":"text","data":"Г"}]},{"name":"text","data":"点带边所计算的波长值,同时面内损耗得到改善,但面内损耗依然是腔泄露的主要因素,由"},{"name":"xref","data":{"text":"式(1)","type":"disp-formula","rid":"DF1","data":[{"name":"text","data":"式(1)"}]}},{"name":"text","data":"得总的品质因子主要由面内损耗决定,此时"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"值主要受限于微腔的尺寸。但可以预计达到一定面积时,面内损耗达到最低,"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"值将达到饱和,并接近于无限面积时微腔的"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"值。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"3.3 异质结构光子晶体谐振特性研究"}],"level":"2","id":"s3c"}},{"name":"p","data":[{"name":"text","data":"以"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":"=194 nm,"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"=60 nm作为核心区光子晶体参数,并取"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"=30的正方形作为核心区,先固定包层区"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"=40,通过选择核心区空气孔的半径大于包层空气孔的半径,核心区中该点附近的模式将具有更高的频率,这阻止了它与包层区中的类似模式耦合。"}]},{"name":"p","data":[{"name":"text","data":"研究"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"对微腔特性的影响,结果如"},{"name":"xref","data":{"text":"图3","type":"fig","rid":"F3","data":[{"name":"text","data":"图3"}]}},{"name":"text","data":"所示。由"},{"name":"xref","data":{"text":"图3","type":"fig","rid":"F3","data":[{"name":"text","data":"图3"}]}},{"name":"text","data":"(a)可知"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"对谐振波长的影响很小。在核心和包层区域中的模式之间将形成靠近"},{"name":"italic","data":[{"name":"text","data":"Γ"}]},{"name":"text","data":"的模式间隙。尽管该光子晶体结构在该波长范围内不支持完全的面内带隙,但是由于有效折射率和模式图案的不匹配,基模腔模式与具有相同频率的高阶包层模式之间的耦合很小。因此,在异质结构中,腔模可以被横向限制在核心区中。"}]},{"name":"fig","data":{"id":"F3","caption":[{"lang":"zh","label":[{"name":"text","data":"图3"}],"title":[{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"对微腔特性的影响"}]},{"lang":"en","label":[{"name":"text","data":"Fig.3"}],"title":[{"name":"text","data":"Effect of "},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":" on microcavity properties"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115812&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115819&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115816&type=","width":"160.02000427","height":"74.25267029","fontsize":""}]}},{"name":"p","data":[{"name":"text","data":"当包层半径逐渐增加时,核心层和包层之间的晶格失配得到改善("},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"="},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"时晶格失配最小),面外损耗得到改善,品质因子升高,达到最佳值。超过这个最佳值后,模式的空间限制减小("},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"="},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"时模式限制最小),因此面内损耗增加。从"},{"name":"xref","data":{"text":"图3","type":"fig","rid":"F3","data":[{"name":"text","data":"图3"}]}},{"name":"text","data":"(b)可知,"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"=52 nm时"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"值达到最大,这是因为核心层和包层的半径之间由于微小的差异获得了最低的面内损耗。大量的损失是由于在核心层的边缘发生的衍射损失。"},{"name":"xref","data":{"text":"图3","type":"fig","rid":"F3","data":[{"name":"text","data":"图3"}]}},{"name":"text","data":"(c)所示为"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"=52 nm时基模在此异质结构中的光场分布图,光场被主要限制在核心区,与包层区域重叠较小。"}]},{"name":"p","data":[{"name":"text","data":"接下来固定"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"=52 nm,研究"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"对微腔特性的影响。结果如"},{"name":"xref","data":{"text":"图4","type":"fig","rid":"F4","data":[{"name":"text","data":"图4"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"F4","caption":[{"lang":"zh","label":[{"name":"text","data":"图4"}],"title":[{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"对微腔特性的影响"}]},{"lang":"en","label":[{"name":"text","data":"Fig.4"}],"title":[{"name":"text","data":"Effect of "},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":" on microcavity properties"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115823&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115832&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115827&type=","width":"160.02000427","height":"54.22900009","fontsize":""}]}},{"name":"p","data":[{"name":"xref","data":{"text":"图4","type":"fig","rid":"F4","data":[{"name":"text","data":"图4"}]}},{"name":"text","data":"(a)验证了"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"对谐振波长的影响同样很小,因为核心区模场与包层区域重叠很小。"},{"name":"xref","data":{"text":"图4","type":"fig","rid":"F4","data":[{"name":"text","data":"图4"}]}},{"name":"text","data":"(b)可知,随着"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"的增加,"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"值逐渐达到饱和,这表明随着包层层数的增加面内损耗逐渐减小,腔泄漏的限制因素从面内损耗变为面外损耗。"},{"name":"xref","data":{"text":"图4","type":"fig","rid":"F4","data":[{"name":"text","data":"图4"}]}},{"name":"text","data":"(c)显示,模场体积随着包层层数增大而增大,光场会覆盖更多的包层区,形成损耗更低的面内反馈,品质因子得到改善。"}]},{"name":"p","data":[{"name":"text","data":"光子寿命由"},{"name":"xref","data":{"text":"公式(2)","type":"disp-formula","rid":"DF2","data":[{"name":"text","data":"公式(2)"}]}},{"name":"text","data":"可得:"}]},{"name":"dispformula","data":{"label":[{"name":"text","data":"(2)"}],"data":[{"name":"math","data":{"math":"","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115840&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115835&type=","width":"11.85333347","height":"8.38199997","fontsize":""}}},{"name":"text","data":","}],"id":"DF2"}},{"name":"p","data":[{"name":"text","data":"式中:"},{"name":"italic","data":[{"name":"text","data":"τ"}]},{"name":"text","data":"代表光子的平均寿命,"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"代表谐振腔的品质因子,"},{"name":"italic","data":[{"name":"text","data":"ω"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"代表谐振频率。"}]},{"name":"p","data":[{"name":"text","data":"当"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"不断增加时,谐振频率基本不变,腔损耗越小,光子寿命则越大,腔内光场衰减越慢。综合考虑,选取"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"=130进行后续研究。"}]},{"name":"p","data":[{"name":"text","data":"以上述优化的"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"和"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"为基础,研究"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"对微腔特性的影响。结果如"},{"name":"xref","data":{"text":"表2","type":"table","rid":"T2","data":[{"name":"text","data":"表2"}]}},{"name":"text","data":"所示。"}]},{"name":"table","data":{"id":"T2","caption":[{"lang":"zh","label":[{"name":"text","data":"表2"}],"title":[{"name":"text","data":"不同"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"的异质结构光子晶体微腔的谐振参数"}]},{"lang":"en","label":[{"name":"text","data":"Tab.2"}],"title":[{"name":"text","data":"Resonance parameters of photonic crystal micro-cavities with different "},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":" structures"}]}],"note":[],"table":[{"head":[[{"align":"center","style":"border-top:solid;border-bottom:solid;","data":[{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"core"}]}]},{"align":"center","style":"border-top:solid;border-bottom:solid;","data":[{"name":"text","data":"波长/nm"}]},{"align":"center","style":"border-top:solid;border-bottom:solid;","data":[{"name":"italic","data":[{"name":"text","data":"Q"}]}]},{"align":"center","style":"border-top:solid;border-bottom:solid;","data":[{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"m"}]},{"name":"text","data":"/("},{"name":"italic","data":[{"name":"text","data":"λ"}]},{"name":"text","data":"/"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":")"},{"name":"sup","data":[{"name":"text","data":"3"}]}]},{"align":"center","style":"border-top:solid;border-bottom:solid;","data":[{"name":"italic","data":[{"name":"text","data":"F"}]},{"name":"sub","data":[{"name":"text","data":"p"}]}]}]],"body":[[{"align":"center","data":[{"name":"text","data":"15"}]},{"align":"center","data":[{"name":"text","data":"453.03"}]},{"align":"center","data":[{"name":"text","data":"3 500"}]},{"align":"center","data":[{"name":"text","data":"0.39"}]},{"align":"center","data":[{"name":"text","data":"683"}]}],[{"align":"center","data":[{"name":"text","data":"30"}]},{"align":"center","data":[{"name":"text","data":"452.823"}]},{"align":"center","data":[{"name":"text","data":"7 076"}]},{"align":"center","data":[{"name":"text","data":"0.7"}]},{"align":"center","data":[{"name":"text","data":"769"}]}],[{"align":"center","style":"border-bottom:solid;","data":[{"name":"text","data":"45"}]},{"align":"center","style":"border-bottom:solid;","data":[{"name":"text","data":"452.71"}]},{"align":"center","style":"border-bottom:solid;","data":[{"name":"text","data":"10 630"}]},{"align":"center","style":"border-bottom:solid;","data":[{"name":"text","data":"1.49"}]},{"align":"center","style":"border-bottom:solid;","data":[{"name":"text","data":"542"}]}]],"foot":[]}],"graphics":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115848&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115842&type=","width":"76.90000153","height":"20.70001221","fontsize":""}}},{"name":"p","data":[{"name":"text","data":"随着"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"的增加,谐振模式将接近位于能带顶部的"},{"name":"italic","data":[{"name":"text","data":"Γ"}]},{"name":"text","data":"点,更多的能量存储在空腔内,"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"m"}]},{"name":"text","data":"增大,品质因子"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"理论上会单调增加。可以预料当"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"接近无穷大时,将成为具有发散"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"的真实BIC。品质因子随着核心区的增大而增加,这表明腔的核心越大,光子从发生面外散射的腔边缘连续“反弹”所需的时间就越长。"}]},{"name":"p","data":[{"name":"text","data":"Purcell因子定义为:"}]},{"name":"dispformula","data":{"label":[{"name":"text","data":"(3)"}],"data":[{"name":"math","data":{"math":"","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115855&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115850&type=","width":"32.59666443","height":"9.90600014","fontsize":""}}},{"name":"text","data":","}],"id":"DF3"}},{"name":"p","data":[{"name":"text","data":"式中:"},{"name":"italic","data":[{"name":"text","data":"λ"}]},{"name":"text","data":"为谐振波长,"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"为介质折射率。"}]},{"name":"p","data":[{"name":"text","data":"Purcell因子"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"7","type":"bibr","rid":"R7","data":[{"name":"text","data":"7"}]}},{"name":"text","data":","},{"name":"xref","data":{"text":"21","type":"bibr","rid":"R21","data":[{"name":"text","data":"21"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"是表征光学微腔性能的重要参数,高Purcell因子意味着高自发辐射率,有利于激光的产生。从"},{"name":"xref","data":{"text":"式(3)","type":"disp-formula","rid":"DF3","data":[{"name":"text","data":"式(3)"}]}},{"name":"text","data":"中可以看出在介质折射率固定,谐振波长基本不变的情况下,Purcell因子主要取决于"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"/"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"m"}]},{"name":"text","data":",即一个性能优越的微腔要具有高品质因子和小模场体积。经过计算可得"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"=30时,Purcell因子相对较大为769,此时谐振波长为452.823 nm,"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"值为7 076,模场体积为0.7("},{"name":"italic","data":[{"name":"text","data":"λ"}]},{"name":"text","data":"/"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":")"},{"name":"sup","data":[{"name":"text","data":"3"}]},{"name":"text","data":"。此时微腔的场分布如"},{"name":"xref","data":{"text":"图5","type":"fig","rid":"F5","data":[{"name":"text","data":"图5"}]}},{"name":"text","data":"(a)所示,从图中可以看出,光被很好地束缚在微腔中。"},{"name":"xref","data":{"text":"图5","type":"fig","rid":"F5","data":[{"name":"text","data":"图5"}]}},{"name":"text","data":"(b)为"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"=45时的光场分布,相比"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"=30时光场限制区域随着"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"的增大而增大。"}]},{"name":"fig","data":{"id":"F5","caption":[{"lang":"zh","label":[{"name":"text","data":"图5"}],"title":[{"name":"text","data":"不同"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"下的场分布"}]},{"lang":"en","label":[{"name":"text","data":"Fig.5"}],"title":[{"name":"text","data":"Field distribution under different "},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"core"}]}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115860&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115867&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=38115863&type=","width":"160.02000427","height":"91.48233032","fontsize":""}]}}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"4 结 论"}],"level":"1","id":"s4"}},{"name":"p","data":[{"name":"text","data":"本文提出了一种基于GaN异质光子晶体结构的蓝光波段谐振微腔,结构包括基于不同空气孔大小的光子晶体核心区和包层区。通过能带分析确定和解释了该结构在蓝光波段的微腔谐振机制;分析了无限面积和一定面积光子晶体结构的谐振特点;重点研究了异质结构光子晶体微腔的结构参数对腔损耗、谐振频率、模场体积等的影响,优化出了异质结构微腔的高"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"/"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"m"}]},{"name":"text","data":"谐振参数。在"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":"=194 nm,"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"=60 nm,"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"core"}]},{"name":"text","data":"=30,"},{"name":"italic","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"=52 nm,"},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"sub","data":[{"name":"text","data":"clad"}]},{"name":"text","data":"=130时Purcell因子达到769,模场体积为0.7("},{"name":"italic","data":[{"name":"text","data":"λ"}]},{"name":"text","data":"/"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":")"},{"name":"sup","data":[{"name":"text","data":"3"}]},{"name":"text","data":"。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"R1","label":"1","citation":[{"lang":"en","text":[{"name":"text","data":"LU Q J"},{"name":"text","data":", "},{"name":"text","data":"CHEN X G"},{"name":"text","data":", "},{"name":"text","data":"ZOU C L"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Extreme terahertz electric-field enhancement in high-Q photonic crystal slab cavity with nanoholes"},{"name":"text","data":"[J]. "},{"name":"text","data":"Optics Express"},{"name":"text","data":", "},{"name":"text","data":"2018"},{"name":"text","data":", "},{"name":"text","data":"26"},{"name":"text","data":"("},{"name":"text","data":"23"},{"name":"text","data":"): "},{"name":"text","data":"30851"},{"name":"text","data":"-"},{"name":"text","data":"30861"},{"name":"text","data":"."}],"title":"Extreme terahertz electric-field enhancement in high-Q photonic crystal slab cavity with nanoholes"}]},{"id":"R2","label":"2","citation":[{"lang":"en","text":[{"name":"text","data":"XU P P"},{"name":"text","data":", "},{"name":"text","data":"ZHENG J J"},{"name":"text","data":", "},{"name":"text","data":"ZHOU J"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Multi-slot photonic crystal cavities for high-sensitivity refractive index sensing"},{"name":"text","data":"[J]. "},{"name":"text","data":"Optics Express"},{"name":"text","data":", "},{"name":"text","data":"2019"},{"name":"text","data":", "},{"name":"text","data":"27"},{"name":"text","data":"("},{"name":"text","data":"3"},{"name":"text","data":"): "},{"name":"text","data":"3609"},{"name":"text","data":"-"},{"name":"text","data":"3616"},{"name":"text","data":"."}],"title":"Multi-slot photonic crystal cavities for high-sensitivity refractive index sensing"}]},{"id":"R3","label":"3","citation":[{"lang":"en","text":[{"name":"text","data":"SHINODA K"},{"name":"text","data":", "},{"name":"text","data":"OHTERA Y"},{"name":"text","data":". "},{"name":"text","data":"Alignment-free filter array: Snapshot multispectral polarization imaging based on a Voronoi-like random photonic crystal filter"},{"name":"text","data":"[J]. "},{"name":"text","data":"Optics Express"},{"name":"text","data":", "},{"name":"text","data":"2020"},{"name":"text","data":", "},{"name":"text","data":"28"},{"name":"text","data":"("},{"name":"text","data":"26"},{"name":"text","data":"): "},{"name":"text","data":"38867"},{"name":"text","data":"-"},{"name":"text","data":"38882"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1364/OE.411488"}],"href":"http://dx.doi.org/10.1364/OE.411488"}}],"title":"Alignment-free filter array: Snapshot multispectral polarization imaging based on a Voronoi-like random photonic crystal filter"}]},{"id":"R4","label":"4","citation":[{"lang":"en","text":[{"name":"text","data":"AKAHANE Y"},{"name":"text","data":", "},{"name":"text","data":"ASANO T"},{"name":"text","data":", "},{"name":"text","data":"SONG B S"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"High-Q photonic nanocavity in a two-dimensional photonic crystal"},{"name":"text","data":"[J]. "},{"name":"text","data":"Nature"},{"name":"text","data":", "},{"name":"text","data":"2003"},{"name":"text","data":", "},{"name":"text","data":"425"},{"name":"text","data":"("},{"name":"text","data":"6961"},{"name":"text","data":"): "},{"name":"text","data":"944"},{"name":"text","data":"-"},{"name":"text","data":"947"},{"name":"text","data":"."}],"title":"High-Q photonic nanocavity in a two-dimensional photonic crystal"}]},{"id":"R5","label":"5","citation":[{"lang":"en","text":[{"name":"text","data":"GIANNOPOULOS A V"},{"name":"text","data":", "},{"name":"text","data":"LI Y J"},{"name":"text","data":", "},{"name":"text","data":"LONG C M"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Optical properties of photonic crystal heterostructure cavity lasers"},{"name":"text","data":"[J]. "},{"name":"text","data":"Optics Express"},{"name":"text","data":", "},{"name":"text","data":"2009"},{"name":"text","data":", "},{"name":"text","data":"17"},{"name":"text","data":"("},{"name":"text","data":"7"},{"name":"text","data":"): "},{"name":"text","data":"5379"},{"name":"text","data":"-"},{"name":"text","data":"5390"},{"name":"text","data":"."}],"title":"Optical properties of photonic crystal heterostructure cavity lasers"}]},{"id":"R6","label":"6","citation":[{"lang":"en","text":[{"name":"text","data":"GE X C"},{"name":"text","data":", "},{"name":"text","data":"MINKOV M"},{"name":"text","data":", "},{"name":"text","data":"FAN S H"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling"},{"name":"text","data":"[J]. "},{"name":"text","data":"Applied Physics Letters"},{"name":"text","data":", "},{"name":"text","data":"2018"},{"name":"text","data":", "},{"name":"text","data":"112"},{"name":"text","data":"("},{"name":"text","data":"14"},{"name":"text","data":"): "},{"name":"text","data":"141105"},{"name":"text","data":"."}],"title":"Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling"}]},{"id":"R7","label":"7","citation":[{"lang":"en","text":[{"name":"text","data":"INOUE T"},{"name":"text","data":", "},{"name":"text","data":"YOSHIDA M"},{"name":"text","data":", "},{"name":"text","data":"ZOYSA M D"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Design of photonic-crystal surface-emitting lasers with enhanced in-plane optical feedback for high-speed operation"},{"name":"text","data":"[J]. "},{"name":"text","data":"Optics Express"},{"name":"text","data":", "},{"name":"text","data":"2020"},{"name":"text","data":", "},{"name":"text","data":"28"},{"name":"text","data":"("},{"name":"text","data":"4"},{"name":"text","data":"): "},{"name":"text","data":"5050"},{"name":"text","data":"-"},{"name":"text","data":"5057"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1364/OE.385277"}],"href":"http://dx.doi.org/10.1364/OE.385277"}}],"title":"Design of photonic-crystal surface-emitting lasers with enhanced in-plane optical feedback for high-speed operation"}]},{"id":"R8","label":"8","citation":[{"lang":"en","text":[{"name":"text","data":"PAINTER O"},{"name":"text","data":", "},{"name":"text","data":"LEE R K"},{"name":"text","data":", "},{"name":"text","data":"SCHERER A"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Two-dimensional photonic band-Gap defect mode laser"},{"name":"text","data":"[J]. "},{"name":"text","data":"Science"},{"name":"text","data":", "},{"name":"text","data":"1999"},{"name":"text","data":", "},{"name":"text","data":"284"},{"name":"text","data":"("},{"name":"text","data":"5421"},{"name":"text","data":"): "},{"name":"text","data":"1819"},{"name":"text","data":"-"},{"name":"text","data":"1821"},{"name":"text","data":"."}],"title":"Two-dimensional photonic band-Gap defect mode laser"}]},{"id":"R9","label":"9","citation":[{"lang":"en","text":[{"name":"text","data":"XIONG Y F"},{"name":"text","data":", "},{"name":"text","data":"YE H Q"},{"name":"text","data":", "},{"name":"text","data":"UMEDA T"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Photonic crystal circular defect (CirD) laser"},{"name":"text","data":"[J]. "},{"name":"text","data":"Photonics"},{"name":"text","data":", "},{"name":"text","data":"2019"},{"name":"text","data":", "},{"name":"text","data":"6"},{"name":"text","data":"("},{"name":"text","data":"2"},{"name":"text","data":"): "},{"name":"text","data":"54"},{"name":"text","data":"."}],"title":"Photonic crystal circular defect (CirD) laser"}]},{"id":"R10","label":"10","citation":[{"lang":"zh","text":[{"name":"text","data":"张雨茜"},{"name":"text","data":", "},{"name":"text","data":"陆志成"},{"name":"text","data":", "},{"name":"text","data":"张伟"},{"name":"text","data":", "},{"name":"text","data":"等"},{"name":"text","data":". "},{"name":"text","data":"硅基纳米柱GaN-LED的制备与光谱特性分析"},{"name":"text","data":"[J]. "},{"name":"text","data":"光谱学与光谱分析"},{"name":"text","data":", "},{"name":"text","data":"2019"},{"name":"text","data":", "},{"name":"text","data":"39"},{"name":"text","data":"("},{"name":"text","data":"8"},{"name":"text","data":"): "},{"name":"text","data":"2450"},{"name":"text","data":"-"},{"name":"text","data":"2453"},{"name":"text","data":"."}],"title":"硅基纳米柱GaN-LED的制备与光谱特性分析"},{"lang":"en","text":[{"name":"text","data":"ZHANG Y X"},{"name":"text","data":", "},{"name":"text","data":"LU ZH CH"},{"name":"text","data":", "},{"name":"text","data":"ZHANG W"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Study of the fabrication and spectral analysis of silicon-based nanocolumn GaN-LED"},{"name":"text","data":"[J]. "},{"name":"text","data":"Spectroscopy and Spectral Analysis"},{"name":"text","data":", "},{"name":"text","data":"2019"},{"name":"text","data":", "},{"name":"text","data":"39"},{"name":"text","data":"("},{"name":"text","data":"8"},{"name":"text","data":"): "},{"name":"text","data":"2450"},{"name":"text","data":"-"},{"name":"text","data":"2453"},{"name":"text","data":"."},{"name":"text","data":"(in Chinese)"}],"title":"Study of the fabrication and spectral analysis of silicon-based nanocolumn GaN-LED"}]},{"id":"R11","label":"11","citation":[{"lang":"zh","text":[{"name":"text","data":"江孝伟"},{"name":"text","data":", "},{"name":"text","data":"赵建伟"},{"name":"text","data":", "},{"name":"text","data":"武华"},{"name":"text","data":". "},{"name":"text","data":"高光提取效率倒装发光二极管的设计与优化"},{"name":"text","data":"[J]. "},{"name":"text","data":"激光与光电子学进展"},{"name":"text","data":", "},{"name":"text","data":"2018"},{"name":"text","data":", "},{"name":"text","data":"55"},{"name":"text","data":"("},{"name":"text","data":"9"},{"name":"text","data":"): "},{"name":"text","data":"396"},{"name":"text","data":"-"},{"name":"text","data":"401"},{"name":"text","data":"."}],"title":"高光提取效率倒装发光二极管的设计与优化"},{"lang":"en","text":[{"name":"text","data":"JIANG X W"},{"name":"text","data":", "},{"name":"text","data":"ZHAO J W"},{"name":"text","data":", "},{"name":"text","data":"WU H"},{"name":"text","data":". "},{"name":"text","data":"Design and optimization of flip-chip light-emitting diode with high light extraction efficiency"},{"name":"text","data":"[J]. "},{"name":"text","data":"Laser & Optoelectronics Progress"},{"name":"text","data":", "},{"name":"text","data":"2018"},{"name":"text","data":", "},{"name":"text","data":"55"},{"name":"text","data":"("},{"name":"text","data":"9"},{"name":"text","data":"): "},{"name":"text","data":"396"},{"name":"text","data":"-"},{"name":"text","data":"401"},{"name":"text","data":"."},{"name":"text","data":"(in Chinese)"}],"title":"Design and optimization of flip-chip light-emitting diode with high light extraction efficiency"}]},{"id":"R12","label":"12","citation":[{"lang":"zh","text":[{"name":"text","data":"洪国彬"},{"name":"text","data":", "},{"name":"text","data":"杨钧杰"},{"name":"text","data":", "},{"name":"text","data":"卢廷昌"},{"name":"text","data":". "},{"name":"text","data":"蓝紫光氮化镓光子晶体面射型激光器"},{"name":"text","data":"[J]. "},{"name":"text","data":"中国光学"},{"name":"text","data":", "},{"name":"text","data":"2014"},{"name":"text","data":", "},{"name":"text","data":"7"},{"name":"text","data":"("},{"name":"text","data":"4"},{"name":"text","data":"): "},{"name":"text","data":"559"},{"name":"text","data":"-"},{"name":"text","data":"571"},{"name":"text","data":"."}],"title":"蓝紫光氮化镓光子晶体面射型激光器"},{"lang":"en","text":[{"name":"text","data":"HONG G B"},{"name":"text","data":", "},{"name":"text","data":"YANG J J"},{"name":"text","data":", "},{"name":"text","data":"LU T CH"},{"name":"text","data":". "},{"name":"text","data":"Blue-Violet GaN-based photonic crystal surface emitting lasers"},{"name":"text","data":"[J]. "},{"name":"text","data":"Chinese Optics"},{"name":"text","data":", "},{"name":"text","data":"2014"},{"name":"text","data":", "},{"name":"text","data":"7"},{"name":"text","data":"("},{"name":"text","data":"4"},{"name":"text","data":"): "},{"name":"text","data":"559"},{"name":"text","data":"-"},{"name":"text","data":"571"},{"name":"text","data":"."},{"name":"text","data":"(in Chinese)"}],"title":"Blue-Violet GaN-based photonic crystal surface emitting lasers"}]},{"id":"R13","label":"13","citation":[{"lang":"en","text":[{"name":"text","data":"ALHASSAN A I"},{"name":"text","data":", "},{"name":"text","data":"YOUNG E C"},{"name":"text","data":", "},{"name":"text","data":"ALYAMANI A Y"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Reduced-droop green III–nitride light-emitting diodes utilizing GaN tunnel junction"},{"name":"text","data":"[J]. "},{"name":"text","data":"Applied Physics Express"},{"name":"text","data":", "},{"name":"text","data":"2018"},{"name":"text","data":", "},{"name":"text","data":"11"},{"name":"text","data":"("},{"name":"text","data":"4"},{"name":"text","data":"): "},{"name":"text","data":"042101"},{"name":"text","data":"."}],"title":"Reduced-droop green III–nitride light-emitting diodes utilizing GaN tunnel junction"}]},{"id":"R14","label":"14","citation":[{"lang":"en","text":[{"name":"text","data":"LU H Y"},{"name":"text","data":", "},{"name":"text","data":"TIAN S C"},{"name":"text","data":", "},{"name":"text","data":"TONG C Z"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Extracting more light for vertical emission: high power continuous wave operation of 1.3-μm quantum-dot photonic-crystal surface-emitting laser based on a flat band"},{"name":"text","data":"[J]. "},{"name":"text","data":"Light: Science & Applications"},{"name":"text","data":", "},{"name":"text","data":"2019"},{"name":"text","data":", "},{"name":"text","data":"8"},{"name":"text","data":": "},{"name":"text","data":"108"},{"name":"text","data":"."}],"title":"Extracting more light for vertical emission: high power continuous wave operation of 1.3-μm quantum-dot photonic-crystal surface-emitting laser based on a flat band"}]},{"id":"R15","label":"15","citation":[{"lang":"en","text":[{"name":"text","data":"ANTOS R"},{"name":"text","data":", "},{"name":"text","data":"VOZDA V"},{"name":"text","data":", "},{"name":"text","data":"VEIS M"},{"name":"text","data":". "},{"name":"text","data":"Plane wave expansion method used to engineer photonic crystal sensors with high efficiency"},{"name":"text","data":"[J]. "},{"name":"text","data":"Optics Express"},{"name":"text","data":", "},{"name":"text","data":"2014"},{"name":"text","data":", "},{"name":"text","data":"22"},{"name":"text","data":"("},{"name":"text","data":"3"},{"name":"text","data":"): "},{"name":"text","data":"2562"},{"name":"text","data":"-"},{"name":"text","data":"2577"},{"name":"text","data":"."}],"title":"Plane wave expansion method used to engineer photonic crystal sensors with high efficiency"}]},{"id":"R16","label":"16","citation":[{"lang":"en","text":[{"name":"text","data":"ANTOS R"},{"name":"text","data":", "},{"name":"text","data":"VEIS M"},{"name":"text","data":". "},{"name":"text","data":"Fourier factorization with complex polarization bases in the plane-wave expansion method applied to two-dimensional photonic crystals"},{"name":"text","data":"[J]. "},{"name":"text","data":"Optics Express"},{"name":"text","data":", "},{"name":"text","data":"2010"},{"name":"text","data":", "},{"name":"text","data":"18"},{"name":"text","data":"("},{"name":"text","data":"26"},{"name":"text","data":"): "},{"name":"text","data":"27511"},{"name":"text","data":"-"},{"name":"text","data":"27524"},{"name":"text","data":"."}],"title":"Fourier factorization with complex polarization bases in the plane-wave expansion method applied to two-dimensional photonic crystals"}]},{"id":"R17","label":"17","citation":[{"lang":"en","text":[{"name":"text","data":"BORDAS F"},{"name":"text","data":", "},{"name":"text","data":"STEEL M J"},{"name":"text","data":", "},{"name":"text","data":"SEASSAL C"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Confinement of band-edge modes in a photonic crystal slab"},{"name":"text","data":"[J]. "},{"name":"text","data":"Optics Express"},{"name":"text","data":", "},{"name":"text","data":"2007"},{"name":"text","data":", "},{"name":"text","data":"15"},{"name":"text","data":"("},{"name":"text","data":"17"},{"name":"text","data":"): "},{"name":"text","data":"10890"},{"name":"text","data":"-"},{"name":"text","data":"10902"},{"name":"text","data":"."}],"title":"Confinement of band-edge modes in a photonic crystal slab"}]},{"id":"R18","label":"18","citation":[{"lang":"en","text":[{"name":"text","data":"FAN S H"},{"name":"text","data":", "},{"name":"text","data":"JOANNOPOULOS J D"},{"name":"text","data":". "},{"name":"text","data":"Analysis of guided resonances in photonic crystal slabs"},{"name":"text","data":"[J]. "},{"name":"text","data":"Physical Review B"},{"name":"text","data":", "},{"name":"text","data":"2002"},{"name":"text","data":", "},{"name":"text","data":"65"},{"name":"text","data":"("},{"name":"text","data":"23"},{"name":"text","data":"): "},{"name":"text","data":"235112"},{"name":"text","data":"."}],"title":"Analysis of guided resonances in photonic crystal slabs"}]},{"id":"R19","label":"19","citation":[{"lang":"en","text":[{"name":"text","data":"FERRIER L"},{"name":"text","data":", "},{"name":"text","data":"ROJO-ROMEO P"},{"name":"text","data":", "},{"name":"text","data":"DROUARD E"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Slow Bloch mode confinement in 2D photonic crystals for surface operating devices"},{"name":"text","data":"[J]. "},{"name":"text","data":"Optics Express"},{"name":"text","data":", "},{"name":"text","data":"2008"},{"name":"text","data":", "},{"name":"text","data":"16"},{"name":"text","data":"("},{"name":"text","data":"5"},{"name":"text","data":"): "},{"name":"text","data":"3136"},{"name":"text","data":"-"},{"name":"text","data":"3145"},{"name":"text","data":"."}],"title":"Slow Bloch mode confinement in 2D photonic crystals for surface operating devices"}]},{"id":"R20","label":"20","citation":[{"lang":"en","text":[{"name":"text","data":"CHO H"},{"name":"text","data":", "},{"name":"text","data":"CHUNG J"},{"name":"text","data":", "},{"name":"text","data":"SONG J"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Importance of Purcell factor for optimizing structure of organic light-emitting diodes"},{"name":"text","data":"[J]. "},{"name":"text","data":"Optics Express"},{"name":"text","data":", "},{"name":"text","data":"2019"},{"name":"text","data":", "},{"name":"text","data":"27"},{"name":"text","data":"("},{"name":"text","data":"8"},{"name":"text","data":"): "},{"name":"text","data":"11057"},{"name":"text","data":"-"},{"name":"text","data":"11068"},{"name":"text","data":"."}],"title":"Importance of Purcell factor for optimizing structure of organic light-emitting diodes"}]},{"id":"R21","label":"21","citation":[{"lang":"en","text":[{"name":"text","data":"ZHENG Y D"},{"name":"text","data":", "},{"name":"text","data":"XIAO F A"},{"name":"text","data":", "},{"name":"text","data":"LIU W J"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Purcell effect and light extraction of Tamm-plasmon-cavity green light-emitting diodes"},{"name":"text","data":"[J]. "},{"name":"text","data":"Optics Express"},{"name":"text","data":", "},{"name":"text","data":"2019"},{"name":"text","data":", "},{"name":"text","data":"27"},{"name":"text","data":"("},{"name":"text","data":"21"},{"name":"text","data":"): "},{"name":"text","data":"30852"},{"name":"text","data":"-"},{"name":"text","data":"30863"},{"name":"text","data":"."}],"title":"Purcell effect and light extraction of Tamm-plasmon-cavity green light-emitting diodes"}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.37188/OPE.20223024.3097","clc":[[{"name":"text","data":"TN256"}],[{"name":"text","data":"TN36"}]],"dc":[{"name":"text","data":"A"}],"publisherid":"1004-924X(2022)24-3097-08","citeme":[{"data":[{"name":"text","data":"沈威,徐许,高宏伟等.氮化镓基异质结构光子晶体微腔特性研究[J].光学精密工程,2022,30(24):3097-3104."}],"text":"沈威,徐许,高宏伟等.氮化镓基异质结构光子晶体微腔特性研究[J].光学精密工程,2022,30(24):3097-3104."},{"data":[{"name":"text","data":"SHEN Wei,XU Xu,GAO Hongwei,et al.Study on the characteristics of Gallium Nitride based hetero-structure photonic crystal micro-cavity[J].Optics and Precision Engineering,2022,30(24):3097-3104."}],"text":"SHEN Wei,XU Xu,GAO Hongwei,et al.Study on the characteristics of Gallium Nitride based hetero-structure photonic crystal micro-cavity[J].Optics and Precision Engineering,2022,30(24):3097-3104."}],"fundinggroup":[{"lang":"zh","text":[{"name":"text","data":"信息光子学与光通信国家重点实验室(北京邮电大学)开放基金资助项目(No.IPOC2021B03); 国家留学基金资助项目(No.201908320061);中国博士后科学基金资助项目(No.2018M640507);南京邮电大学研究基金资助项目(No.NY218046)"}]}],"history":{"received":"2022-06-24","revised":"2022-08-22","ppub":"2022-12-25","opub":"2022-12-27"}},"appendix":[],"type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"光学精密工程","issue":"24","volume":"30","originalSource":[]}