{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"双气室铯光泵磁力仪设计与验证"}]},{"lang":"en","data":[{"name":"text","data":"Design and verification of dual-cell cesium optically pumped magnetometer"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"黄","givenname":"艺明","namestyle":"eastern","prefix":""},{"lang":"en","surname":"HUANG","givenname":"Yiming","namestyle":"eastern","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":["first-author"],"bio":[{"lang":"zh","text":["黄艺明(1999-),男,江西抚州人,硕士研究生,2020年于上海交通大学获得学士学位,主要从事光泵磁力仪方面的研究。E-mail: sjtu-hym@sjtu.edu.cn"],"graphic":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440207&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440228&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440225&type=","width":"22.01333237","height":"32.00399780","fontsize":""}],"data":[[{"name":"text","data":"黄艺明"},{"name":"text","data":"(1999-),男,江西抚州人,硕士研究生,2020年于上海交通大学获得学士学位,主要从事光泵磁力仪方面的研究。E-mail: "},{"name":"text","data":"sjtu-hym@sjtu.edu.cn"}]]}],"email":"sjtu-hym@sjtu.edu.cn","deceased":false},{"name":[{"lang":"zh","surname":"李","givenname":"绍良","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LI","givenname":"Shaoliang","namestyle":"eastern","prefix":""}],"stringName":[],"aff":[{"rid":"aff2","text":"2"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"骆","givenname":"曼箬","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LUO","givenname":"Manruo","namestyle":"eastern","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"吴","givenname":"招才","namestyle":"eastern","prefix":""},{"lang":"en","surname":"WU","givenname":"Zhaocai","namestyle":"eastern","prefix":""}],"stringName":[],"aff":[{"rid":"aff3","text":"3"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"刘","givenname":"华","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LIU","givenname":"Hua","namestyle":"eastern","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":["corresp"],"corresp":[{"rid":"cor1","lang":"en","text":"E-mail: liuyuhua@sjtu.edu.cn","data":[{"name":"text","data":"E-mail: liuyuhua@sjtu.edu.cn"}]}],"bio":[{"lang":"zh","text":["刘 华(1974-),男,重庆人,博士,副教授,1997年、2000年于重庆交通大学分别获得学士、硕士学位,2003年于上海交通大学获得博士学位,主要从事原子陀螺仪、光泵磁力仪等方面的研究。E-mail: liuyuhua@sjtu.edu.cn"],"graphic":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440216&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440233&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440231&type=","width":"22.01332855","height":"32.00399780","fontsize":""}],"data":[[{"name":"text","data":"刘 华"},{"name":"text","data":"(1974-),男,重庆人,博士,副教授,1997年、2000年于重庆交通大学分别获得学士、硕士学位,2003年于上海交通大学获得博士学位,主要从事原子陀螺仪、光泵磁力仪等方面的研究。E-mail: "},{"name":"text","data":"liuyuhua@sjtu.edu.cn"}]]}],"email":"liuyuhua@sjtu.edu.cn","deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"1","text":"上海交通大学 电子信息与电气工程学院,上海 200240","data":[{"name":"text","data":"上海交通大学 电子信息与电气工程学院,上海 200240"}]},{"lang":"en","label":"1","text":"School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China","data":[{"name":"text","data":"School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China"}]}]},{"id":"aff2","intro":[{"lang":"zh","label":"2","text":"上海航天控制技术研究所,上海惯性工程技术研究中心,上海 201109","data":[{"name":"text","data":"上海航天控制技术研究所,上海惯性工程技术研究中心,上海 201109"}]},{"lang":"en","label":"2","text":"Shanghai Aerospace Control Technology Institute, Shanghai Inertia Engineering Technology Research Center, Shanghai 201109, China","data":[{"name":"text","data":"Shanghai Aerospace Control Technology Institute, Shanghai Inertia Engineering Technology Research Center, Shanghai 201109, China"}]}]},{"id":"aff3","intro":[{"lang":"zh","label":"3","text":"自然资源部 第二海洋研究所,浙江 杭州 310012","data":[{"name":"text","data":"自然资源部 第二海洋研究所,浙江 杭州 310012"}]},{"lang":"en","label":"3","text":"Second Institute of Oceanography, The Ministry of Natural Resources, Hangzhou 310012, China","data":[{"name":"text","data":"Second Institute of Oceanography, The Ministry of Natural Resources, Hangzhou 310012, China"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"由于自激振荡式单气室光泵磁力仪受移相电路限制测量范围较窄,对双气室光泵磁力仪进行集成化研究和改进,基于对光泵磁力仪基本原理的推导论证,提出了双气室铯光泵磁力仪的一种高度集成的设计结构。该方案中以垂直腔面发射激光器作为泵浦光源,以刀锋直角棱镜反射镜作为分光镜片,其余元件沿光轴对称排布,利用左旋、右旋圆偏振光的双泵浦光结构和双气室布置实现相移互补,不需要移相电路。利用搭建的原理样机测得实验环境下地磁场强度为37 586.79 nT,并利用扫描方式测得三轴分量。双气室铯光泵磁力仪原理样机的测量范围为25 700~77 000 nT,灵敏度约为"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"20 pT/Hz","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440253&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440238&type=","width":"16.17133331","height":"4.48733330","fontsize":""}}}]},{"name":"text","data":"。实验结果和对比测量结果、理论计算结果相吻合,验证了双气室光泵磁力仪的理论分析,证实了该双气室光泵磁力仪结构的可行性和精确度。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"Regarding the wide application of geomagnetic field measurement in magnetic prospecting, navigation, and positioning, the measurement range of the single-cell self-oscillating optically pumped magnetometer (OPM) is limited by the phase-shift circuit, and the existing dual-cell OPM abroad exhibits a low integration degree and poor portability. In this study, the integration of the dual-cell OPM is improved to break the blockade and improve the research level of the domestic OPM. Through the derivation and demonstration of the principle of the OPM, a highly integrated structure design of the dual-cell cesium OPM is presented. A VCSEL is used as the pump light source, and a knife-edge right-angle prism mirror is used as the spectroscope, while other components are arranged symmetrically along the optical axis. A dual-pump light structure with left- and right-handed circularly polarized light and a dual-cell arrangement is used, which achieves precise phase-shift compensation and avoids the need for a phase-shift circuit. The geomagnetic field in the experimental environment is 37 586.79 nT, as measured by a prototype, and the magnitude of the triaxial component is obtained via the scanning method. The measurement range of the OPM prototype is 25 700-77 000 nT, and the sensitivity is approximately 20 pT"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"Hz","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440258&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440242&type=","width":"7.70466709","height":"4.06400013","fontsize":""}}}]},{"name":"text","data":". The experimental results are consistent with the comparative measurement and theoretical calculation results, validating the theoretical analysis of the dual-cell OPM and confirming its feasibility, accuracy, and advantages for improving the system integration."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"地磁场"}],[{"name":"text","data":"光泵磁力仪"}],[{"name":"text","data":"磁共振"}],[{"name":"text","data":"双气室"}],[{"name":"text","data":"测量范围"}],[{"name":"text","data":"集成化"}]]},{"lang":"en","data":[[{"name":"text","data":"geomagnetic field"}],[{"name":"text","data":"optically pumped magnetometer"}],[{"name":"text","data":"magnetic resonance"}],[{"name":"text","data":"dual-cell"}],[{"name":"text","data":"measurement range"}],[{"name":"text","data":"integration"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"1 引 言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"地磁场是地球内部天然存在的磁性现象,平均强度约为"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"5×10-5 T","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440262&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440245&type=","width":"16.84866714","height":"3.13266683","fontsize":""}}}]},{"name":"text","data":",属于弱磁场,但却蕴藏着地球内部的压力、温度和物质分布等丰富信息。地磁场还直接影响着地球上带电体和磁体的运动,可作为航天、航海的天然参考坐标系"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"1","type":"bibr","rid":"R1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。地磁场测量为地球科学研究提供有效的数据支撑,是地震预测探索的重要手段。在地质勘探方面,利用金属矿石等导致的磁场局部差异进行磁法勘探是地质结构研究和矿产资源定位的重要手段。在军事领域,将实时测得的磁场数据与已有地磁场数据对比,从而实现磁性物体的探测,这在海底探潜中应用十分广泛;地磁场测量的另一项关键应用是地磁导航,将地磁场测量与GNSS、惯性系统结合,能为海上舰艇和武器提供全天时、全天候、全地域的导航和制导"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"2","type":"bibr","rid":"R2","data":[{"name":"text","data":"2"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"4","type":"bibr","rid":"R4","data":[{"name":"text","data":"4"}]}}],"rid":["R2","R3","R4"],"text":"2-4","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"在磁通门磁力仪(Fluxgate Magnetometer)、超导量子干涉仪(Superconducting Quantum Interference Device,SQUID)、质子旋进磁力仪(Proton Precession Magnetometer,PPM)等众多地磁测量仪器中,光泵磁力仪(Optically Pumped Magnetometer,OPM)凭借其精度高、能耗小、成本低的优势,成为弱磁检测领域应用最广泛的磁力仪"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"5","type":"bibr","rid":"R5","data":[{"name":"text","data":"5"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"7","type":"bibr","rid":"R7","data":[{"name":"text","data":"7"}]}}],"rid":["R5","R6","R7"],"text":"5-7","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"OPM以塞曼效应和光磁共振为基本原理,精度可达到"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"1 pT/Hz","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440266&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440264&type=","width":"17.01799965","height":"5.24933338","fontsize":""}}}]},{"name":"text","data":",通常以稀有气体元素氦(He),铷(Rb)、铯(Cs)等碱金属元素作为敏感物质。氦光泵磁力仪通常采用跟踪式工作方式,需要通过频率扫描确定共振点,响应速度较慢。而碱金属OPM为自激振荡式,根据输出光信号相对射频磁场发生固定相移的特性,通过搭建反馈回路保持敏感元素原子时刻处在共振状态,具有极快的响应速度"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"8","type":"bibr","rid":"R8","data":[{"name":"text","data":"8"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。目前,我国对氦光泵磁力仪的研究已经取得了一些成果,如国土资源部航遥中心研制的HC-2000K型氦光泵磁力仪,灵敏度为"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"3 pT/Hz","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440251&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440249&type=","width":"17.01799965","height":"5.24933338","fontsize":""}}}]},{"name":"text","data":"。中国船舶重工集团715所的RS-YGB6A型氦OPM,精度为"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"5 pT/Hz","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440273&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440271&type=","width":"17.01799965","height":"5.24933338","fontsize":""}}}]},{"name":"text","data":",测量范围为35 000~70 000 nT。"}]},{"name":"p","data":[{"name":"text","data":"传统的单气室碱金属磁力仪需要通过相位调整电路保证回路相移为零,受电路结构限制,无法在宽频带范围内保证移相精度,磁场测量范围受限。而双气室OPM利用左旋、右旋圆偏振光的双束光结构和双气室布置,恰好能实现相移互补,避免移相电路对磁力仪测量范围的限制,拓宽了测量范围,简化了电路结构,但却使得探头复杂度提升,体积增大。美国Geometrics公司的G882型和加拿大Scintrex公司的CS-VL型自振荡分束铯光泵磁力仪,灵敏度高达"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"1 pT/Hz","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440285&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440277&type=","width":"17.01799965","height":"5.24933338","fontsize":""}}}]},{"name":"text","data":",测量范围覆盖20 000~100 000 nT。G882型海洋磁力仪以拖曳的方式跟随船体在海洋等水下区域工作,拖鱼总长度达到137 cm,质量更是达到了18 kg,而CS-VL型铯光泵磁力仪的探头尺寸为"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"Φ63 mm×160 mm","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440280&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440279&type=","width":"30.31066895","height":"2.87866688","fontsize":""}}}]},{"name":"text","data":",质量达1 kg,并且另外配有传感器电子箱,总质量达到1.8 kg。我国在自激振荡式双气室光泵磁力仪领域研究起步较晚,并且由于国外技术封锁,相关研究成果较少。加快国内光泵磁力仪研究,打破国外技术封锁,并提升现有双气室光泵磁力仪的便携性,有利于实现光泵磁力仪在地磁场测量领域的进一步应用。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"2 工作原理"}],"level":"1","id":"s2"}},{"name":"p","data":[{"name":"text","data":"当原子处在外磁场"},{"name":"italic","data":[{"name":"text","data":"B"}]},{"name":"text","data":"时,若外磁场方向与原子磁矩方向成一个夹角,原子磁矩受到转矩的作用会发生进动,即拉莫尔进动。进动的角频率与外磁场成正比"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"9","type":"bibr","rid":"R9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",即:"}]},{"name":"dispformula","data":{"label":[{"name":"text","data":"(1)"}],"data":[{"name":"math","data":{"math":"ω=γB","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440294&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440291&type=","width":"11.76866722","height":"3.64066648","fontsize":""}}},{"name":"text","data":","}],"id":"DF1"}},{"name":"p","data":[{"name":"text","data":"其中:"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"γ=gFμB/","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440299&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440296&type=","width":"16.17133331","height":"4.82600021","fontsize":""}}}]},{"name":"italic","data":[{"name":"text","data":"ћ"}]},{"name":"text","data":",称为旋磁比,是原子的固有常数;"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"gF","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440307&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440302&type=","width":"3.47133350","height":"4.57200003","fontsize":""}}}]},{"name":"text","data":"为朗德因子,"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"μB","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440313&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440282&type=","width":"3.64066648","height":"4.57200003","fontsize":""}}}]},{"name":"text","data":"为波尔磁子。铯原子的"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"γ=3.498 57 Hz/nT","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440329&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440312&type=","width":"31.66533470","height":"3.64066648","fontsize":""}}}]},{"name":"text","data":"。通过检测铯原子做拉莫尔进动的频率,从而获得外磁场强度,是光泵磁力仪测量磁场的核心原理。单个铯原子的进动频率较难检测,利用光磁共振技术可将大量铯原子的拉莫尔进动频率转换为宏观的共振信号频率,从而实现磁场测量。"}]},{"name":"p","data":[{"name":"text","data":"铯原子的轨道结构分裂产生精细结构,精细结构分裂产生超精细结构。在外磁场"},{"name":"italic","data":[{"name":"text","data":"B"}]},{"name":"text","data":"的作用下,由于塞曼效应,铯原子的超精细结构进一步分裂成"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"2F+1","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440318&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440331&type=","width":"11.09133339","height":"2.96333337","fontsize":""}}}]},{"name":"text","data":"个塞曼子能级,以磁量子数"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"mF","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440334&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440319&type=","width":"4.31799984","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":"表示"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"mF=-F,-F+1,,F-1,F","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440336&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440335&type=","width":"52.15466690","height":"4.23333359","fontsize":""}}}]},{"name":"text","data":",其中"},{"name":"italic","data":[{"name":"text","data":"F"}]},{"name":"text","data":"为原子总角动量"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"10","type":"bibr","rid":"R10","data":[{"name":"text","data":"10"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。各子能级上的原子在外磁场方向上的磁矩分量为"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"μz=mFγ","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440338&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440337&type=","width":"16.34066582","height":"4.65666676","fontsize":""}}}]},{"name":"text","data":"。塞曼效应指出,在一定磁场范围内,相邻塞曼子能级间隔相同,均为"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"E=gFμBB","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440342&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440340&type=","width":"20.48933220","height":"4.57200003","fontsize":""}}}]},{"name":"text","data":"。当外磁场强度接近0时,各塞曼子能级处于简并态。当外磁场强度过大时,各子能级间隔不等,无法产生稳定的磁共振效应,地磁场强度恰好处在光泵磁力仪的工作范围内。"}]},{"name":"p","data":[{"name":"text","data":"基态上的铯原子在波长为894.8 nm的泵浦激光作用下,吸收能量从基态"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"6S 2S1/2","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440423&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440422&type=","width":"8.80533314","height":"5.07999992","fontsize":""}}}]},{"name":"text","data":"跃迁至激发态"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"6P 2P1/2","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440384&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440392&type=","width":"9.31333351","height":"5.07999992","fontsize":""}}}]},{"name":"text","data":"(称作铯原子的D1线)。在跃迁过程中,左旋圆偏振光"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"σ-","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440348&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440358&type=","width":"3.55599999","height":"3.04800010","fontsize":""}}}]},{"name":"text","data":"使得原子磁量子数"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"mF+1","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440362&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440352&type=","width":"11.00666618","height":"3.80999994","fontsize":""}}}]},{"name":"text","data":",右旋圆偏振光"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"σ+","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440356&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440355&type=","width":"3.64066648","height":"3.04800010","fontsize":""}}}]},{"name":"text","data":"使得磁量子数"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"mF-1","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440365&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440373&type=","width":"11.00666618","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":"。如"},{"name":"xref","data":{"text":"图1","type":"fig","rid":"F1","data":[{"name":"text","data":"图1"}]}},{"name":"text","data":"所示,在左旋圆偏振光泵浦下,只有基态"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"6S 2S1/2","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440423&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440422&type=","width":"8.80533314","height":"5.07999992","fontsize":""}}}]},{"name":"text","data":"的"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"F=4,mF=4","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440378&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440368&type=","width":"22.09799957","height":"4.14866638","fontsize":""}}}]},{"name":"text","data":"塞曼子能级上的铯原子无法吸收泵浦光的能量发生跃迁。而在右旋圆偏振光泵浦下,只有基态"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"6S 2S1/2","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440423&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440422&type=","width":"8.80533314","height":"5.07999992","fontsize":""}}}]},{"name":"text","data":"的"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"F=4,mF=-4","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440437&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440424&type=","width":"25.65399933","height":"4.14866638","fontsize":""}}}]},{"name":"text","data":"塞曼子能级上的铯原子无法吸收发生跃迁。同时,由于自发辐射,原子又将释放能量回到基态,该过程同样满足选择定则"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"mF=0,±1","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440390&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440389&type=","width":"22.35199928","height":"4.23333359","fontsize":""}}}]},{"name":"text","data":"。以激发态"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"6P 2P1/2","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440384&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440392&type=","width":"9.31333351","height":"5.07999992","fontsize":""}}}]},{"name":"text","data":"的"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"F=4,mF=0","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440386&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440394&type=","width":"22.09799957","height":"4.14866638","fontsize":""}}}]},{"name":"text","data":"塞曼子能级为例,该子能级上的原子只能辐射跃迁至基态"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"6S 2S1/2","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440423&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440422&type=","width":"8.80533314","height":"5.07999992","fontsize":""}}}]},{"name":"text","data":"的"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"F=3,4,mF=0,±1","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440405&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440418&type=","width":"34.37466812","height":"4.23333359","fontsize":""}}}]},{"name":"text","data":"塞曼子能级。因此,充分泵浦达到平衡后,若泵浦光为左旋圆偏振光,则原子将集中分布在基态"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"6S 2S1/2","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440423&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440422&type=","width":"8.80533314","height":"5.07999992","fontsize":""}}}]},{"name":"text","data":"的"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"F=4,mF=4","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440415&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440413&type=","width":"22.09799957","height":"4.14866638","fontsize":""}}}]},{"name":"text","data":"塞曼子能级,产生偏极化分布。而当采用右旋圆偏振光泵浦时,原子将聚集在基态"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"6S 2S1/2","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440423&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440422&type=","width":"8.80533314","height":"5.07999992","fontsize":""}}}]},{"name":"text","data":"的"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"F=4,mF=-4","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440437&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440424&type=","width":"25.65399933","height":"4.14866638","fontsize":""}}}]},{"name":"text","data":"塞曼子能级"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"11","type":"bibr","rid":"R11","data":[{"name":"text","data":"11"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"fig","data":{"id":"F1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"inlineformula","data":[{"name":"math","data":{"math":"σ-","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440441&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440440&type=","width":"3.13266683","height":"2.62466669","fontsize":""}}}]},{"name":"text","data":"光泵浦极化原理示意图"}]},{"lang":"en","label":[{"name":"text","data":"Fig.1"}],"title":[{"name":"text","data":"Schematic diagram of polarization pumped by "},{"name":"inlineformula","data":[{"name":"math","data":{"math":"σ-","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440444&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440443&type=","width":"3.13266683","height":"2.62466669","fontsize":""}}}]}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440447&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440465&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440463&type=","width":"75.01467133","height":"38.81966400","fontsize":""}]}},{"name":"p","data":[{"name":"text","data":"在外磁场"},{"name":"italic","data":[{"name":"text","data":"B"}]},{"name":"text","data":"的垂直方向上施加一个旋转磁场,若旋转磁场能量"},{"name":"italic","data":[{"name":"text","data":"ћf"}]},{"name":"text","data":"恰好与两塞曼子能级间能量差相等,即旋转磁场频率恰好满足:"}]},{"name":"dispformula","data":{"label":[{"name":"text","data":"(2)"}],"data":[{"name":"math","data":{"math":"f=gFμBB=γB","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440469&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440467&type=","width":"26.83933067","height":"7.95866632","fontsize":""}}},{"name":"text","data":"."}],"id":"DF2"}},{"name":"p","data":[{"name":"text","data":"则原子在相邻塞曼子能级之间跃迁,发生磁共振,形成去极化分布。"}]},{"name":"p","data":[{"name":"text","data":"对于铯光泵磁力仪系统,未施加旋转磁场时,各塞曼子能级上的原子数满足玻尔兹曼分布,宏观表现为静磁化强度"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"M0=μz/V","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440452&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440450&type=","width":"21.50533485","height":"4.65666676","fontsize":""}}}]},{"name":"text","data":",其中"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"μz","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440472&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440471&type=","width":"3.04800010","height":"4.65666676","fontsize":""}}}]},{"name":"text","data":"为各塞曼子能级上原子磁矩在外磁场方向上的分量,"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"text","data":"为样品体积。当施加旋转磁场激发磁共振时,可根据布洛赫方程对气室中所有铯原子的宏观磁化强度进行分析:"}]},{"name":"dispformula","data":{"label":[{"name":"text","data":"(3)"}],"data":[{"name":"math","data":{"math":"dMdt=γM×B-Mx+MyT2-Mz-M0T1","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440474&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440473&type=","width":"62.39933777","height":"9.56733322","fontsize":""}}},{"name":"text","data":","}],"id":"DF3"}},{"name":"p","data":[{"name":"text","data":"其中"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"Mx","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440476&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440475&type=","width":"4.65666676","height":"4.31799984","fontsize":""}}}]},{"name":"text","data":","},{"name":"inlineformula","data":[{"name":"math","data":{"math":"My","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440477&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440454&type=","width":"4.57200003","height":"4.74133301","fontsize":""}}}]},{"name":"text","data":","},{"name":"inlineformula","data":[{"name":"math","data":{"math":"Mz","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440457&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440478&type=","width":"4.48733330","height":"4.31799984","fontsize":""}}}]},{"name":"text","data":",分别为"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"M","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440480&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440458&type=","width":"3.89466691","height":"4.06400013","fontsize":""}}}]},{"name":"text","data":"的3轴分量,"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"T1,T2","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440461&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440482&type=","width":"9.39799976","height":"4.14866638","fontsize":""}}}]},{"name":"text","data":"分别为纵向、横向的弛豫时间"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"12","type":"bibr","rid":"R12","data":[{"name":"text","data":"12"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"沿"},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":"轴方向施加的射频磁场"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"Brfcos ωt","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440486&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440484&type=","width":"14.30866718","height":"3.80999994","fontsize":""}}}]},{"name":"text","data":",可分解为"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"xy","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440494&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440493&type=","width":"4.06400013","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":"平面上的两个旋转磁场"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"B1","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440496&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440495&type=","width":"3.72533321","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":","},{"name":"inlineformula","data":[{"name":"math","data":{"math":"B2","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440498&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440497&type=","width":"3.72533321","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":",只有与铯原子拉莫尔进动方向相同的旋转磁场"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"B1","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440500&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440499&type=","width":"3.72533321","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":"才能引起磁共振效应:"}]},{"name":"dispformula","data":{"label":[{"name":"text","data":"(4)"}],"data":[{"name":"math","data":{"math":"B1Bx=12Brfcos ωtBy=-12Brfsin ωt,B2Bx=12Brfcos ωtBy=12Brfsin ωt","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440502&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440501&type=","width":"69.08799744","height":"18.62666702","fontsize":""}}},{"name":"text","data":"."}],"id":"DF4"}},{"name":"p","data":[{"name":"text","data":"代入"},{"name":"xref","data":{"text":"式(3)","type":"disp-formula","rid":"DF3","data":[{"name":"text","data":"式(3)"}]}},{"name":"text","data":"中可得到泵浦光方向上的铯原子磁化强度"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"Mx","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440504&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440503&type=","width":"4.82600021","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":"为:"}]},{"name":"dispformula","data":{"label":[{"name":"text","data":"(5)"}],"data":[{"name":"math","data":{"math":"Mx=γBrf/2T2M01+γBrf/22T1T2sin ωt","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440488&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440505&type=","width":"48.09066391","height":"13.54666710","fontsize":""}}},{"name":"text","data":"."}],"id":"DF5"}},{"name":"p","data":[{"name":"text","data":"磁化强度越大,极化的铯原子越多,吸收的光子数越多,输出光信号强度越小。在光磁共振过程中,透射过铯原子气室的激光强度同样以拉莫尔频率变化,并且当泵浦光为左旋圆偏振光时,铯原子集中分布在基态"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"mF=4","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440490&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440489&type=","width":"11.00666618","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":"塞曼子能级上,静磁化强度"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"M0","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440491&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440506&type=","width":"4.57200003","height":"4.31799984","fontsize":""}}}]},{"name":"text","data":"与外磁场方向相同,取值为正,相对于射频磁场"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"Brfcos ωt","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440508&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440507&type=","width":"14.30866718","height":"3.80999994","fontsize":""}}}]},{"name":"text","data":",输出光信号强度的相位移动了"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"+90°","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440520&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440519&type=","width":"8.29733276","height":"3.13266683","fontsize":""}}}]},{"name":"text","data":"。而当采用右旋圆偏振光泵浦时,铯原子处在基态"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"mF=-4","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440492&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440511&type=","width":"14.56266594","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":"塞曼子能级上,静磁化强度"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"M0","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440513&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440512&type=","width":"4.57200003","height":"4.31799984","fontsize":""}}}]},{"name":"text","data":"与外磁场方向相反,取值为负,因此,出射光强度相对射频磁场发生的相移为"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"-90°","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440542&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440541&type=","width":"8.21266651","height":"3.04800010","fontsize":""}}}]},{"name":"text","data":"。输出光信号强度可表示为:"}]},{"name":"dispformula","data":{"label":[{"name":"text","data":"(6)"}],"data":[{"name":"math","data":{"math":"S=a-bM0sin ωt=a+bM0cos ωt+90°,σ-a+bM0sin ωt=a+bM0cos ωt-90°,σ+","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440525&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440524&type=","width":"71.03533173","height":"16.42533302","fontsize":""}}},{"name":"text","data":","}],"id":"DF6"}},{"name":"p","data":[{"name":"text","data":"其中"},{"name":"italic","data":[{"name":"text","data":"a"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"b"}]},{"name":"text","data":"为和原子所处塞曼子能级相关的正数。"}]},{"name":"p","data":[{"name":"text","data":"在光泵磁力仪系统中,回路要能够产生稳定的自激振荡,需满足如下条件:"}]},{"name":"dispformula","data":{"label":[{"name":"text","data":"(7)"}],"data":[{"name":"math","data":{"math":"A˙F˙=1φ=2nπn为整","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440527&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440526&type=","width":"34.20533371","height":"13.12333298","fontsize":""}}},{"name":"text","data":","}],"id":"DF7"}},{"name":"p","data":[{"name":"text","data":"其中:"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"A˙F˙","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440516&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440515&type=","width":"7.78933382","height":"5.50333309","fontsize":""}}}]},{"name":"text","data":"表示回路总增益,"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"φ","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440518&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440517&type=","width":"5.16466665","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":"表示回路总相移。"}]},{"name":"p","data":[{"name":"text","data":"传统的单气室自激振荡式光泵磁力仪中,利用一束圆偏振光对一个原子气室进行泵浦。如"},{"name":"xref","data":{"text":"图2","type":"fig","rid":"F2","data":[{"name":"text","data":"图2"}]}},{"name":"text","data":"(a)所示,泵浦光为左旋圆偏振光,此时出射光强度相对射频磁场相位超前"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"+90°","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440520&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440519&type=","width":"8.29733276","height":"3.13266683","fontsize":""}}}]},{"name":"text","data":",需要设计一个"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"-90°","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440528&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440521&type=","width":"8.21266651","height":"3.04800010","fontsize":""}}}]},{"name":"text","data":"的移相电路才能满足相位平衡条件,产生自激振荡。移相电路在保证高精度的固定"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"-90°","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440542&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440541&type=","width":"8.21266651","height":"3.04800010","fontsize":""}}}]},{"name":"text","data":"相移的同时还需维持增益稳定,设计难度较大,无法在宽频带内满足要求,磁力仪的测量范围受到明显限制"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"13","type":"bibr","rid":"R13","data":[{"name":"text","data":"13"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"14","type":"bibr","rid":"R14","data":[{"name":"text","data":"14"}]}}],"rid":["R13","R14"],"text":"13-14","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。而采用两束泵浦激光和两个铯原子气室,如"},{"name":"xref","data":{"text":"图2","type":"fig","rid":"F2","data":[{"name":"text","data":"图2"}]}},{"name":"text","data":"(b)所示,利用左旋、右旋圆偏振光分别对左、右铯原子气室进行泵浦,出射光信号经电路处理后,分别驱动右、左气室外围的射频线圈,在“∞”型回路中发生了一次"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"+90°","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440540&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440539&type=","width":"8.29733276","height":"3.13266683","fontsize":""}}}]},{"name":"text","data":"移相和一次"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"-90°","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440542&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440541&type=","width":"8.21266651","height":"3.04800010","fontsize":""}}}]},{"name":"text","data":"移相,两部分相移恰好互补,回路总相移为0,满足自激振荡的相角平衡条件,原理上自激振荡式光泵磁力仪不再需要移相电路。通过调节信号处理电路的增益,使回路总增益满足自激振荡的幅度平衡条件,则系统可在不主动施加射频磁场时自发产生振荡信号,并且频率稳定在拉莫尔进动频率点。通过测量回路中振荡波形的频率,就可以获得铯原子作拉莫尔进动的频率,再代入"},{"name":"xref","data":{"text":"式(1)","type":"disp-formula","rid":"DF1","data":[{"name":"text","data":"式(1)"}]}},{"name":"text","data":"计算出外磁场强度。"}]},{"name":"figgroup","data":{"id":"F2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"text","data":"光泵磁力仪相移示意图"}]},{"lang":"en","label":[{"name":"text","data":"Fig.2"}],"title":[{"name":"text","data":"Phase shift of OPM"}]}],"note":[],"layout":"1;2;","grid":[[{"name":"fig","data":{"id":"F2a1","caption":[{"lang":"zh","title":[]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440529&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440530&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440543&type=","width":"75.01467133","height":"33.95133591","fontsize":""}]}},{"name":"fig","data":{"id":"F2a2","caption":[{"lang":"zh","title":[]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440531&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440532&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440544&type=","width":"75.01467133","height":"34.12067032","fontsize":""}]}}]],"alternatives":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440534&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440533&type=","width":"79.26706696","height":"75.47200775","fontsize":""}}},{"name":"p","data":[{"name":"text","data":"单气室和双气室铯光泵磁力仪虽然是基于相同的物理学原理和磁场测量手段,但是采用不同方式来实现相移补偿搭建反馈回路。在双气室结构中利用左旋、右旋圆偏振光泵浦下共振信号自身的相移互补特性,不需要移相电路,能有效提升光泵磁力仪的测量范围。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"3 实验装置"}],"level":"1","id":"s3"}},{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"3.1 光路设计"}],"level":"2","id":"s3a"}},{"name":"p","data":[{"name":"text","data":"基于以上对铯光泵磁力仪的原理分析,设计的双气室铯光泵磁力仪光路结构如"},{"name":"xref","data":{"text":"图3","type":"fig","rid":"F3","data":[{"name":"text","data":"图3"}]}},{"name":"text","data":"所示。采用垂直腔面发射激光器(VCSEL)作为泵浦光源,相比于国外光泵磁力仪采用铯灯作为泵浦光源,具有更好的单色性和更窄的谱线,省去("},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"d"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"处)滤光片的使用"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"15","type":"bibr","rid":"R15","data":[{"name":"text","data":"15"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"16","type":"bibr","rid":"R16","data":[{"name":"text","data":"16"}]}}],"rid":["R15","R16"],"text":"15-16","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。激光波长受温度和电流控制,稳定性更好。激光管体积更小,驱动和控制电路结构更加简单,便于进一步的系统集成化。设置VCSEL的温度和电流参数,发出波长为894.8 nm的激光,经过(b处)分光棱镜后分为两束光,并且保持反向同轴传播,使光路具有更好的对称性。实验中选用的VCSEL激光管发射的光束具有圆形光斑,发散角约为10°,需要使用平凸透镜对光束进行准直。两束光分别穿过左旋圆偏振片、右旋圆偏振片转化为左旋、右旋圆偏振光,然后射入充有铯和缓冲气体氮气的原子气室。透射出的光经凸透镜汇聚后由光电二极管转化为电信号,经信号处理电路隔直、放大后分别用于驱动围绕在右侧、左侧原子气室侧面的亥姆霍兹线圈,产生和光束同一轴向的射频磁场,激发磁共振,构成闭环回路。气室温控采用电加热方式,("},{"name":"italic","data":[{"name":"text","data":"c"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":","},{"name":"italic","data":[{"name":"text","data":"c"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"处)以柔性加热片包裹在铯气室周围,体积小,传热面积大,铯元素处于蒸汽状态,并维持其温度稳定。该光路结构中所有器件均沿光轴排布,具有高度对称性,有利于提升系统的抗振动能力,也更利于系统的进一步集成化设计。"}]},{"name":"fig","data":{"id":"F3","caption":[{"lang":"zh","label":[{"name":"text","data":"图3"}],"title":[{"name":"text","data":"双气室铯光泵磁力仪光路"}]},{"lang":"en","label":[{"name":"text","data":"Fig.3"}],"title":[{"name":"text","data":"Optical path of dual-cell cesium OPM"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440535&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440537&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440536&type=","width":"160.02000427","height":"112.01399994","fontsize":""}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"3.2 探头结构"}],"level":"2","id":"s3b"}},{"name":"p","data":[{"name":"text","data":"实验所用铯原子气室为圆柱形,尺寸为"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"Φ25 mm×27.5 mm","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440554&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440553&type=","width":"32.25799942","height":"2.87866688","fontsize":""}}}]},{"name":"text","data":",激光沿轴线穿过玻璃气室泵浦极化铯原子。"},{"name":"xref","data":{"text":"图3","type":"fig","rid":"F3","data":[{"name":"text","data":"图3"}]}},{"name":"text","data":"中,分光棱镜为Thorlabs公司生产的刀锋直角棱镜反射镜,具有两个尺寸为"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"25 mm×25 mm","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440545&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440555&type=","width":"25.56933212","height":"2.87866688","fontsize":""}}}]},{"name":"text","data":"、互相垂直的反射直角面。现使用圆偏振片直径为25.4 mm,能满足目前气室的使用需求,后续随着气室尺寸缩小至4 mm"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"×","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440557&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440547&type=","width":"2.53999996","height":"2.79399991","fontsize":""}}}]},{"name":"text","data":"4 mm"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"×","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440557&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440547&type=","width":"2.53999996","height":"2.79399991","fontsize":""}}}]},{"name":"text","data":"4 mm,会定制更小尺寸的圆偏振片。凸透镜直径为12.7 mm,焦距长8 mm,沿光路调节至适当位置可使光束恰好转换为平行光。按照上述规格和3.1节中光路图,设计了"},{"name":"xref","data":{"text":"图4","type":"fig","rid":"F4","data":[{"name":"text","data":"图4"}]}},{"name":"text","data":"所示的双气室铯光泵磁力仪探头结构。选用白色树脂材料,稳定性和绝热性好,可承受光泵磁力仪气室温度(约50 ℃),采用3D打印技术加工,精度可达到0.1 mm,有效保证光路的精确度。"}]},{"name":"fig","data":{"id":"F4","caption":[{"lang":"zh","label":[{"name":"text","data":"图4"}],"title":[{"name":"text","data":"铯原子气室和磁力仪探头"}]},{"lang":"en","label":[{"name":"text","data":"Fig.4"}],"title":[{"name":"text","data":"Photos of cesium atomic cell and magnetometer probe"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440548&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440549&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440558&type=","width":"75.01467133","height":"35.68700027","fontsize":""}]}},{"name":"p","data":[{"name":"text","data":"将激光管、各光学镜片以及气室等装配完成后,探头整体结构如"},{"name":"xref","data":{"text":"图5","type":"fig","rid":"F5","data":[{"name":"text","data":"图5"}]}},{"name":"text","data":"所示,探头整体尺寸为"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"Φ55 mm×180 mm","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440550&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440559&type=","width":"30.31066895","height":"2.87866688","fontsize":""}}}]},{"name":"text","data":"。气室位于探头结构两侧的空腔中,气室腔外侧绕制亥姆霍兹线圈,线圈匝数为10,气室与探头壁之间填充棉花和热反射材料以提升加热效率。加热电流由两端接入,其中一侧接有NTC热敏电阻,将气室温度反馈给温控系统。凸透镜安装在U型槽中,可调整位置使激光光束平行穿过气室,经过第二片凸透镜会聚在光电二极管上。探头中段有遮光盖,使用螺母固定,保护激光管和各光学镜片,同时防止自然光和其他杂散光对信号造成干扰。光电接收管安装在两端气室腔盖中心,位于凸透镜焦距处。"}]},{"name":"fig","data":{"id":"F5","caption":[{"lang":"zh","label":[{"name":"text","data":"图5"}],"title":[{"name":"text","data":"磁力仪探头实物图"}]},{"lang":"en","label":[{"name":"text","data":"Fig.5"}],"title":[{"name":"text","data":"Photo of magnetometer probe"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440560&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440551&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440561&type=","width":"75.01467133","height":"50.03799820","fontsize":""}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"3.3 电路设计"}],"level":"2","id":"s3c"}},{"name":"p","data":[{"name":"text","data":"在双气室铯光泵磁力仪系统中,电路结构主要包括无磁加热温控系统和信号处理电路两部分。其中,无磁加热温控系统以柔性加热片作为加热元件,通过折返布线尽可能抵消加热电流产生的磁场。系统采用负反馈系统结构,由热敏电阻测得气室温度并反馈至单片机,与设定值进行比较,控制电加热信号开关。信号处理电路由反馈电路和测频电路两部分组成。反馈电路原理如"},{"name":"xref","data":{"text":"图6","type":"fig","rid":"F6","data":[{"name":"text","data":"图6"}]}},{"name":"text","data":"(a)所示,出射光由光电二极管接收,光电流经跨阻放大器转换为电压信号,通过高通滤波器滤除直流分量后,再由同相放大器进行幅值调整,最后驱动亥姆霍兹线圈产生射频磁场,形成自激振荡。在PCB设计中,如"},{"name":"xref","data":{"text":"图6","type":"fig","rid":"F6","data":[{"name":"text","data":"图6"}]}},{"name":"text","data":"(b)所示,两个通道的反馈电路垂直布置,避免信号产生串扰。自激振荡信号经过一个过零比较器后转为方波,输入单片机后通过检测上升沿获得信号周期,再计算其频率值。利用信号发生器(RIGOL DG4062)输出方波进行测试,电路的测频精度高于0.01 Hz(对应的磁场强度约为3 pT),实验中通过多个周期长度叠加进一步提升频率测量精度。由测频结果根据"},{"name":"xref","data":{"text":"式(1)","type":"disp-formula","rid":"DF1","data":[{"name":"text","data":"式(1)"}]}},{"name":"text","data":"可计算实际磁场强度,即将共振信号的频率测量结果除以铯原子的旋磁比,计算结果通过RS485接口进行传输,从而实现远程磁场测量。"}]},{"name":"figgroup","data":{"id":"F6","caption":[{"lang":"zh","label":[{"name":"text","data":"图6"}],"title":[{"name":"text","data":"信号处理电路"}]},{"lang":"en","label":[{"name":"text","data":"Fig.6"}],"title":[{"name":"text","data":"Signal processing circuit"}]}],"note":[],"layout":"1;2;","grid":[[{"name":"fig","data":{"id":"F6a1","caption":[{"lang":"zh","title":[]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440552&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440569&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440568&type=","width":"75.01467133","height":"44.19599915","fontsize":""}]}},{"name":"fig","data":{"id":"F6a2","caption":[{"lang":"zh","title":[]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440570&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440563&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440562&type=","width":"75.01467133","height":"47.92133331","fontsize":""}]}}]],"alternatives":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440565&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440564&type=","width":"76.90000153","height":"99.40838623","fontsize":""}}}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"4 实验与结果分析"}],"level":"1","id":"s4"}},{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"4.1 磁力仪信号"}],"level":"2","id":"s4a"}},{"name":"p","data":[{"name":"text","data":"基于上述设计模块,搭建了双气室铯光泵磁力仪原理样机。加热气室达到设定温度后开启VCSEL激光器,充分泵浦后成功获得如"},{"name":"xref","data":{"text":"图7","type":"fig","rid":"F7","data":[{"name":"text","data":"图7"}]}},{"name":"text","data":"所示的共振信号波形。光电信号直流分量约为5.2 V,经处理后输入亥姆霍兹线圈中的驱动信号幅值约为300 mV。共振信号转换为0~3.3 V的方波后输入到单片机中测频,结果为131.5 kHz,代入"},{"name":"xref","data":{"text":"式(1)","type":"disp-formula","rid":"DF1","data":[{"name":"text","data":"式(1)"}]}},{"name":"text","data":"计算得到实验环境下铯气室处的外磁场强度为37 586.79 nT,符合实验所在地区地磁场强度的分布规律。由于其他类别磁力仪无法达到同等的灵敏度水平,使用实验室的单气室铯光泵磁力仪样机进行对比测量,结果为37 586.42 nT,两次测量结果十分接近,成功验证了该结果的准确性。"}]},{"name":"fig","data":{"id":"F7","caption":[{"lang":"zh","label":[{"name":"text","data":"图 7"}],"title":[{"name":"text","data":"自激振荡信号"}]},{"lang":"en","label":[{"name":"text","data":"Fig.7"}],"title":[{"name":"text","data":"Self-oscillating magnetometer signal"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440566&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440583&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440567&type=","width":"75.01467133","height":"53.42466354","fontsize":""}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"4.2 地磁场三轴分量测算"}],"level":"2","id":"s4b"}},{"name":"p","data":[{"name":"text","data":"测得实验环境下的地磁场强度后,通过单轴扫描的方式对地磁场三轴分量进行测量和计算。如"},{"name":"xref","data":{"text":"图8","type":"fig","rid":"F8","data":[{"name":"text","data":"图8"}]}},{"name":"text","data":"所示,将磁力仪探头放置于一个三维线圈中心。该线圈由三组轴线互相垂直的亥姆霍兹线圈构成,半径依次为25,28.5,31 cm,中心处可提供足够范围的磁场均匀区。水平方向上两维线圈分别沿东西、南北方向,另一维线圈沿竖直方向,可控制产生空间任意方向的磁场。利用电压源(GWINSTEK GPD-3303S)驱动产生恒定磁场,分辨率为1 mV,可调节各方向上的磁场分量,同时使用六位半万用表(Agilent 34410A)监测亥姆霍兹线圈中的实际电流,能满足实验所需的精度要求。"}]},{"name":"fig","data":{"id":"F8","caption":[{"lang":"zh","label":[{"name":"text","data":"图8"}],"title":[{"name":"text","data":"磁力仪样机测试原理与装置"}]},{"lang":"en","label":[{"name":"text","data":"Fig.8"}],"title":[{"name":"text","data":"Principle and device of magnetometer prototype"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440584&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440571&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440585&type=","width":"75.01467133","height":"38.48099899","fontsize":""}]}},{"name":"p","data":[{"name":"text","data":"依次修改每轴线圈两端施加的电压,即每次仅改变单轴磁场强度,记录不同输入情况下施加的电流"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"Ii","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440587&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440586&type=","width":"2.11666679","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":"("},{"name":"inlineformula","data":[{"name":"math","data":{"math":"i=1,2","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440577&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440596&type=","width":"11.51466751","height":"3.21733332","fontsize":""}}}]},{"name":"text","data":")和测得的合磁场"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"Bxi","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440590&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440573&type=","width":"4.40266657","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":","},{"name":"inlineformula","data":[{"name":"math","data":{"math":"Byi","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440574&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440591&type=","width":"4.31799984","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":","},{"name":"inlineformula","data":[{"name":"math","data":{"math":"Bzi","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440575&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440594&type=","width":"4.23333359","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":"("},{"name":"inlineformula","data":[{"name":"math","data":{"math":"i=1,2","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440577&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440596&type=","width":"11.51466751","height":"3.21733332","fontsize":""}}}]},{"name":"text","data":"),可得:"}]},{"name":"dispformula","data":{"label":[{"name":"text","data":"(8)"}],"data":[{"name":"math","data":{"math":"Bx+kxIi2+By2+Bz2=Bxi2Bx2+By+kyIi2+Bz2=Byi2,i=1,2Bx2+By2+Bz+kzIi2=Bzi2","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440579&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440578&type=","width":"64.43132782","height":"20.31999969","fontsize":""}}},{"name":"text","data":","}],"id":"DF8"}},{"name":"p","data":[{"name":"text","data":"其中:"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"Bx","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440581&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440599&type=","width":"3.80999994","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":","},{"name":"inlineformula","data":[{"name":"math","data":{"math":"By","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440602&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440601&type=","width":"3.72533321","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":","},{"name":"inlineformula","data":[{"name":"math","data":{"math":"Bz","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440614&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440605&type=","width":"3.64066648","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":"代表初始磁场的三轴分量,"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"kx","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440618&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440616&type=","width":"2.87866688","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":","},{"name":"inlineformula","data":[{"name":"math","data":{"math":"ky","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440622&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440620&type=","width":"2.79399991","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":","},{"name":"inlineformula","data":[{"name":"math","data":{"math":"kz","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440607&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440606&type=","width":"2.70933342","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":"表示亥姆霍兹线圈的三轴磁场-电流系数。"}]},{"name":"p","data":[{"name":"text","data":"实验过程中,"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"x","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440628&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440625&type=","width":"2.20133328","height":"2.79399991","fontsize":""}}}]},{"name":"text","data":","},{"name":"inlineformula","data":[{"name":"math","data":{"math":"y","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440610&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440630&type=","width":"2.11666679","height":"3.72533321","fontsize":""}}}]},{"name":"text","data":","},{"name":"inlineformula","data":[{"name":"math","data":{"math":"z","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440635&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440611&type=","width":"1.77800000","height":"2.79399991","fontsize":""}}}]},{"name":"text","data":"三轴分别依次施加20 mA和40 mA电流,获得6组合磁场测量结果,如"},{"name":"xref","data":{"text":"表1","type":"table","rid":"T1","data":[{"name":"text","data":"表1"}]}},{"name":"text","data":"所示。"}]},{"name":"table","data":{"id":"T1","caption":[{"lang":"zh","label":[{"name":"text","data":"表 1"}],"title":[{"name":"text","data":"三轴磁场测量数据"}]},{"lang":"en","label":[{"name":"text","data":"Tab.1"}],"title":[{"name":"text","data":"Triaxial magnetic field measurement data"}]}],"note":[],"table":[{"head":[[{"align":"center","style":"border-top:solid;border-bottom:solid;","data":[{"name":"text","data":"磁场施加方向"}]},{"align":"center","style":"border-top:solid;border-bottom:solid;","data":[{"name":"text","data":"电流/mA"}]},{"align":"center","style":"border-top:solid;border-bottom:solid;","data":[{"name":"text","data":"合磁场强度/nT"}]}]],"body":[[{"align":"center","data":[{"name":"italic","data":[{"name":"text","data":"x"}]}]},{"align":"center","data":[{"name":"text","data":"20"}]},{"align":"center","data":[{"name":"text","data":"40 120.49"}]}],[{"align":"center","data":[{"name":"italic","data":[{"name":"text","data":"x"}]}]},{"align":"center","data":[{"name":"text","data":"40"}]},{"align":"center","data":[{"name":"text","data":"42 300.02"}]}],[{"align":"center","data":[{"name":"italic","data":[{"name":"text","data":"y"}]}]},{"align":"center","data":[{"name":"text","data":"20"}]},{"align":"center","data":[{"name":"text","data":"38 993.21"}]}],[{"align":"center","data":[{"name":"italic","data":[{"name":"text","data":"y"}]}]},{"align":"center","data":[{"name":"text","data":"40"}]},{"align":"center","data":[{"name":"text","data":"40 338.62"}]}],[{"align":"center","data":[{"name":"italic","data":[{"name":"text","data":"z"}]}]},{"align":"center","data":[{"name":"text","data":"20"}]},{"align":"center","data":[{"name":"text","data":"40 732.18"}]}],[{"align":"center","style":"border-bottom:solid;","data":[{"name":"italic","data":[{"name":"text","data":"z"}]}]},{"align":"center","style":"border-bottom:solid;","data":[{"name":"text","data":"40"}]},{"align":"center","style":"border-bottom:solid;","data":[{"name":"text","data":"43 338.33"}]}]],"foot":[]}],"graphics":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440641&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440638&type=","width":"76.90000153","height":"36.22499084","fontsize":""}}},{"name":"p","data":[{"name":"text","data":"将"},{"name":"xref","data":{"text":"表1","type":"table","rid":"T1","data":[{"name":"text","data":"表1"}]}},{"name":"text","data":"所示测量数据代入"},{"name":"xref","data":{"text":"式(8)","type":"disp-formula","rid":"DF8","data":[{"name":"text","data":"式(8)"}]}},{"name":"text","data":",利用MATLAB求解联立方程组,共得16组实数解。依据亥姆霍兹线圈磁场-电流系数的理论计算结果和地磁场三轴分量理论方向,确定"},{"name":"xref","data":{"text":"表2","type":"table","rid":"T2","data":[{"name":"text","data":"表2"}]}},{"name":"text","data":"中实验环境下地磁场三轴分量和外围亥姆霍兹线圈系数的解析解。在实验环境下测得的地磁场南北方向和竖直方向上的分量较大,东西方向上分量较小,符合现有地磁场的数据特征。"}]},{"name":"table","data":{"id":"T2","caption":[{"lang":"zh","label":[{"name":"text","data":"表 2"}],"title":[{"name":"text","data":"地磁场三轴分量和亥姆霍兹线圈系数"}]},{"lang":"en","label":[{"name":"text","data":"Tab.2"}],"title":[{"name":"text","data":"Triaxial component size of geomagnetic field and Helmholtz coil coefficients"}]}],"note":[],"table":[{"head":[[{"align":"center","style":"border-top:solid;border-bottom:solid;","data":[{"name":"text","data":"轴向"}]},{"align":"center","style":"border-top:solid;border-bottom:solid;","data":[{"name":"text","data":"磁场大小/nT"}]},{"align":"center","style":"border-top:solid;border-bottom:solid;","data":[{"name":"text","data":"磁场方向"}]},{"align":"center","style":"border-top:solid;border-bottom:solid;","data":[{"name":"text","data":"线圈系数/(nT·mA"},{"name":"sup","data":[{"name":"text","data":"-1"}]},{"name":"text","data":")"}]}]],"body":[[{"align":"center","data":[{"name":"italic","data":[{"name":"text","data":"x"}]}]},{"align":"center","data":[{"name":"text","data":"18 809.60"}]},{"align":"center","data":[{"name":"text","data":"由南向北"}]},{"align":"center","data":[{"name":"text","data":"184.48"}]}],[{"align":"center","data":[{"name":"italic","data":[{"name":"text","data":"y"}]}]},{"align":"center","data":[{"name":"text","data":"4 446.45"}]},{"align":"center","data":[{"name":"text","data":"由西向东"}]},{"align":"center","data":[{"name":"text","data":"233.20"}]}],[{"align":"center","style":"border-bottom:solid;","data":[{"name":"italic","data":[{"name":"text","data":"z"}]}]},{"align":"center","style":"border-bottom:solid;","data":[{"name":"text","data":"32 919.14"}]},{"align":"center","style":"border-bottom:solid;","data":[{"name":"text","data":"竖直向下"}]},{"align":"center","style":"border-bottom:solid;","data":[{"name":"text","data":"146.76"}]}]],"foot":[]}],"graphics":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440649&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440646&type=","width":"76.90000153","height":"25.72709656","fontsize":""}}}]},{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"4.3 磁力仪测量范围"}],"level":"2","id":"s4c"}},{"name":"p","data":[{"name":"text","data":"为测定双气室铯光泵磁力仪样机的测量范围,并对测量结果的准确性进行验证,利用"},{"name":"xref","data":{"text":"图8","type":"fig","rid":"F8","data":[{"name":"text","data":"图8"}]}},{"name":"text","data":"所示实验装置对样机进行了测试。调节电压源输出,利用电流表记录亥姆霍兹线圈中的电流。磁力仪所测磁场强度为地磁场与亥姆霍兹线圈产生磁场叠加的结果。根据4.2中的测量结果,实验环境中地磁场在竖直方向上分量最大,因此,调节"},{"name":"italic","data":[{"name":"text","data":"z"}]},{"name":"text","data":"方向磁场强度能最大范围改变合磁场强度,同时可根据"},{"name":"xref","data":{"text":"表2","type":"table","rid":"T2","data":[{"name":"text","data":"表2"}]}},{"name":"text","data":"中标定结果,将电流值代入"},{"name":"xref","data":{"text":"式(9)","type":"disp-formula","rid":"DF9","data":[{"name":"text","data":"式(9)"}]}},{"name":"text","data":"计算出合磁场强度的理论值,并与测量结果进行对比分析。"}]},{"name":"dispformula","data":{"label":[{"name":"text","data":"(9)"}],"data":[{"name":"math","data":{"math":"B2=Bx2+By2+Bz+kzIz2","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440658&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440651&type=","width":"47.15933609","height":"4.82600021","fontsize":""}}},{"name":"text","data":"."}],"id":"DF9"}},{"name":"p","data":[{"name":"text","data":"如"},{"name":"xref","data":{"text":"图9","type":"fig","rid":"F9","data":[{"name":"text","data":"图9"}]}},{"name":"text","data":"所示,当"},{"name":"italic","data":[{"name":"text","data":"z"}]},{"name":"text","data":"轴线圈施加磁场与初始磁场分量方向一致,通入电流从0逐步增加至250 mA时,光泵磁力仪共振信号频率从130 kHz逐渐升高至270 kHz,对应的磁场强度约为37 000~77 000 nT。而当电流进一步增大之后,一方面由于电路增益带宽积限制,共振信号幅值减小;另一方面由于各塞曼子能级间隔变化,共振状态稳定性下降,使得光泵磁力仪信噪比下降,磁场测量结果波动较大。"}]},{"name":"fig","data":{"id":"F9","caption":[{"lang":"zh","label":[{"name":"text","data":"图9"}],"title":[{"name":"text","data":"磁力仪测量范围测试结果"}]},{"lang":"en","label":[{"name":"text","data":"Fig.9"}],"title":[{"name":"text","data":"Results of magnetometer measurement range"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440659&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440665&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440662&type=","width":"75.01467133","height":"56.00699997","fontsize":""}]}},{"name":"p","data":[{"name":"text","data":"当电流反向通入"},{"name":"italic","data":[{"name":"text","data":"z"}]},{"name":"text","data":"轴线圈,并逐步增大至100 mA后,由于靠近零磁场各子能级开始呈现出简并态,铯原子的磁共振强度降低,受噪声影响严重,此时拉莫尔进动频率约为90~130 kHz,对应合磁场强度约为25 700~37 000 nT。综合两部分测试结果,考虑到外围线圈的三维正交性和测试环境中的电磁干扰等因素,双气室铯光泵磁力仪原理样机的磁场测量结果与理论计算值十分接近,约为25 700~77 000 nT(90~270 kHz)。样机的测量范围相较国内的单气室光泵磁力仪产品有一定提升,后续将对磁力仪电路和原子气室成分进行优化,提升共磁共振信号质量,进一步提升双气室铯光泵磁力仪的测量范围。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"4.4 磁力仪灵敏度"}],"level":"2","id":"s4d"}},{"name":"p","data":[{"name":"text","data":"灵敏度是评价磁力仪性能的重要指标,反映磁力仪测量结果的噪声水平。通常利用功率谱密度(Power Spectral Density, PSD)表征磁力仪灵敏度,计算结果不受采样时间的影响"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"17","type":"bibr","rid":"R17","data":[{"name":"text","data":"17"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"18","type":"bibr","rid":"R18","data":[{"name":"text","data":"18"}]}}],"rid":["R17","R18"],"text":"17-18","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。在实验条件下,利用双气室铯光泵磁力仪原理样机对地磁场进行约130 s的静态测量,保持铯原子处在共振状态,连续检测共振信号频率记录磁场数据,并计算功率谱密度。测量结果显示,双气室铯光泵磁力仪原理样机在实验环境下的地磁场测量结果平均值为37 439.22 nT,波动不超过600 pT,磁场测量值集中分布在200 pT内,重复性达到0.001 6%。"},{"name":"xref","data":{"text":"图10","type":"fig","rid":"F10","data":[{"name":"text","data":"图10"}]}},{"name":"text","data":"所示功率谱密度计算结果表明,所搭建的双气室铯光泵磁力仪原理样机的灵敏度达到了"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"20 pT/Hz","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440674&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440668&type=","width":"18.88066673","height":"5.24933338","fontsize":""}}}]},{"name":"text","data":"。"}]},{"name":"fig","data":{"id":"F10","caption":[{"lang":"zh","label":[{"name":"text","data":"图10"}],"title":[{"name":"text","data":"磁场测量结果与功率谱密度"}]},{"lang":"en","label":[{"name":"text","data":"Fig.10"}],"title":[{"name":"text","data":"Results of magnetic field measurement and PSD"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440677&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440681&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440679&type=","width":"75.01467133","height":"60.79066849","fontsize":""}]}},{"name":"p","data":[{"name":"text","data":"相较于国内外的光泵磁力仪成熟产品,该原理样机的灵敏度仍存在一定的提升空间。一方面,为调试方便,目前磁力仪探头采用组装式结构,激光管、铯原子气室、光电接收管和各光学镜片均为活动安装,对振动等噪声较为敏感。随着系统优化和设计定型,后续会采用固定结构,抗振动能力增强,灵敏度也将得到有效提升。另一方面,受实验条件限制,测试环境中存在着电压源、示波器、计算机等电子设备,电磁噪声对灵敏度测试存在一定干扰。为获得更加准确的灵敏度结果,还需在磁屏蔽环境下进行更加完备的测试。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"title":[{"name":"text","data":"5 结 论"}],"level":"1","id":"s5"}},{"name":"p","data":[{"name":"text","data":"本文针对传统单气室光泵磁力仪的测量范围受移相电路限制,以及双气室光泵磁力仪集成度低、便携性差的不足,基于对不同旋向圆偏振光泵浦下铯原子光磁共振状态和宏观相位的研究,提出一种双气室铯光泵磁力仪结构设计方案,利用双泵浦光的相位补偿,从原理上避免使用移相电路。搭建了双气室铯光泵磁力仪原理样机,测得实验环境下地磁场强度为37 586.79 nT,通过扫描解算的方式获得三轴分量数据,并与理论计算结果进行对比,成功验证了该设计方案的可行性和准确性。测试结果表明,该原理样机的测量范围为25 700~77 000 nT,灵敏度达到"},{"name":"inlineformula","data":[{"name":"math","data":{"math":"20 pT/Hz","graphicsData":{"small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440689&type=","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43440684&type=","width":"18.88066673","height":"5.24933338","fontsize":""}}}]},{"name":"text","data":"。后续将对样机的光路和探头结构继续进行优化设计,进一步提升系统集成度和光路准确度,同时对光泵磁力仪电路进行集成化研究,提升双气室铯光泵磁力仪的性能,并在磁屏蔽环境下对原理样机进行更加全面准确的测试。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"R1","label":"1","citation":[{"lang":"zh","text":[{"name":"text","data":"任洁"},{"name":"text","data":", "},{"name":"text","data":"谭巍"},{"name":"text","data":", "},{"name":"text","data":"郭峰"},{"name":"text","data":", "},{"name":"text","data":"等"},{"name":"text","data":". "},{"name":"text","data":"空间锶原子光钟磁场分析及主动补偿系统"},{"name":"text","data":"[J]. "},{"name":"text","data":"光学 精密工程"},{"name":"text","data":", "},{"name":"text","data":"2022"},{"name":"text","data":", "},{"name":"text","data":"30"},{"name":"text","data":"("},{"name":"text","data":"11"},{"name":"text","data":"): "},{"name":"text","data":"1337"},{"name":"text","data":"-"},{"name":"text","data":"1343"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.37188/OPE.20223011.1337"}],"href":"http://dx.doi.org/10.37188/OPE.20223011.1337"}}],"title":"空间锶原子光钟磁场分析及主动补偿系统"},{"lang":"en","text":[{"name":"text","data":"REN J"},{"name":"text","data":", "},{"name":"text","data":"TAN W"},{"name":"text","data":", "},{"name":"text","data":"GUO F"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Magnetic field analysis and active compensation system for strontium optical lattice clock in space"},{"name":"text","data":"[J]. "},{"name":"text","data":"Opt. Precision Eng."},{"name":"text","data":", "},{"name":"text","data":"2022"},{"name":"text","data":", "},{"name":"text","data":"30"},{"name":"text","data":"("},{"name":"text","data":"11"},{"name":"text","data":"): "},{"name":"text","data":"1337"},{"name":"text","data":"-"},{"name":"text","data":"1343"},{"name":"text","data":"."},{"name":"text","data":"(in Chinese)"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.37188/OPE.20223011.1337"}],"href":"http://dx.doi.org/10.37188/OPE.20223011.1337"}}],"title":"Magnetic field analysis and active compensation system for strontium optical lattice clock in space"}]},{"id":"R2","label":"2","citation":[{"lang":"zh","text":[{"name":"text","data":"徐国栋"},{"name":"text","data":", "},{"name":"text","data":"李鹏飞"},{"name":"text","data":", "},{"name":"text","data":"董立珉"},{"name":"text","data":", "},{"name":"text","data":"等"},{"name":"text","data":". "},{"name":"text","data":"利用恒星与地磁场确定卫星自主轨道"},{"name":"text","data":"[J]. "},{"name":"text","data":"光学 精密工程"},{"name":"text","data":", "},{"name":"text","data":"2014"},{"name":"text","data":", "},{"name":"text","data":"22"},{"name":"text","data":"("},{"name":"text","data":"5"},{"name":"text","data":"): "},{"name":"text","data":"1280"},{"name":"text","data":"-"},{"name":"text","data":"1288"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.3788/ope.20142205.1280"}],"href":"http://dx.doi.org/10.3788/ope.20142205.1280"}}],"title":"利用恒星与地磁场确定卫星自主轨道"},{"lang":"en","text":[{"name":"text","data":"XU G D"},{"name":"text","data":", "},{"name":"text","data":"LI P F"},{"name":"text","data":", "},{"name":"text","data":"DONG L M"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Determination of satallite autonomous orbit based on star light and geomagnetic field"},{"name":"text","data":"[J]. "},{"name":"text","data":"Optics and Precision Engineering"},{"name":"text","data":", "},{"name":"text","data":"2014"},{"name":"text","data":", "},{"name":"text","data":"22"},{"name":"text","data":"("},{"name":"text","data":"5"},{"name":"text","data":"): "},{"name":"text","data":"1280"},{"name":"text","data":"-"},{"name":"text","data":"1288"},{"name":"text","data":"."},{"name":"text","data":"(in Chinese)"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.3788/ope.20142205.1280"}],"href":"http://dx.doi.org/10.3788/ope.20142205.1280"}}],"title":"Determination of satallite autonomous orbit based on star light and geomagnetic field"}]},{"id":"R3","label":"3","citation":[{"lang":"zh","text":[{"name":"text","data":"张朝阳"},{"name":"text","data":", "},{"name":"text","data":"刘济民"},{"name":"text","data":", "},{"name":"text","data":"杨林"},{"name":"text","data":". "},{"name":"text","data":"磁探潜关键技术现状及发展趋势"},{"name":"text","data":"[J]. "},{"name":"text","data":"科学技术与工程"},{"name":"text","data":", "},{"name":"text","data":"2022"},{"name":"text","data":", "},{"name":"text","data":"22"},{"name":"text","data":"("},{"name":"text","data":"1"},{"name":"text","data":"): "},{"name":"text","data":"18"},{"name":"text","data":"-"},{"name":"text","data":"27"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.3969/j.issn.1671-1815.2022.01.002"}],"href":"http://dx.doi.org/10.3969/j.issn.1671-1815.2022.01.002"}}],"title":"磁探潜关键技术现状及发展趋势"},{"lang":"en","text":[{"name":"text","data":"ZHANG ZH Y"},{"name":"text","data":", "},{"name":"text","data":"LIU J M"},{"name":"text","data":", "},{"name":"text","data":"YANG L"},{"name":"text","data":". "},{"name":"text","data":"Situation and development trend of the key technology of magnetic submarine exploration"},{"name":"text","data":"[J]. "},{"name":"text","data":"Science Technology and Engineering"},{"name":"text","data":", "},{"name":"text","data":"2022"},{"name":"text","data":", "},{"name":"text","data":"22"},{"name":"text","data":"("},{"name":"text","data":"1"},{"name":"text","data":"): "},{"name":"text","data":"18"},{"name":"text","data":"-"},{"name":"text","data":"27"},{"name":"text","data":"."},{"name":"text","data":"(in Chinese)"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.3969/j.issn.1671-1815.2022.01.002"}],"href":"http://dx.doi.org/10.3969/j.issn.1671-1815.2022.01.002"}}],"title":"Situation and development trend of the key technology of magnetic submarine exploration"}]},{"id":"R4","label":"4","citation":[{"lang":"zh","text":[{"name":"text","data":"桂永雷"},{"name":"text","data":", "},{"name":"text","data":"孙立凯"},{"name":"text","data":", "},{"name":"text","data":"崔洪亮"},{"name":"text","data":", "},{"name":"text","data":"等"},{"name":"text","data":". "},{"name":"text","data":"低相噪大面积平衡光电探测器"},{"name":"text","data":"[J]. "},{"name":"text","data":"光学 精密工程"},{"name":"text","data":", "},{"name":"text","data":"2018"},{"name":"text","data":", "},{"name":"text","data":"26"},{"name":"text","data":"("},{"name":"text","data":"2"},{"name":"text","data":"): "},{"name":"text","data":"284"},{"name":"text","data":"-"},{"name":"text","data":"292"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.3788/ope.20182602.0284"}],"href":"http://dx.doi.org/10.3788/ope.20182602.0284"}}],"title":"低相噪大面积平衡光电探测器"},{"lang":"en","text":[{"name":"text","data":"GUI Y L"},{"name":"text","data":", "},{"name":"text","data":"SUN L K"},{"name":"text","data":", "},{"name":"text","data":"CUI H L"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Balanced amplified photodetector with low phase noise and large area"},{"name":"text","data":"[J]. "},{"name":"text","data":"Optics and Precision Engineering"},{"name":"text","data":", "},{"name":"text","data":"2018"},{"name":"text","data":", "},{"name":"text","data":"26"},{"name":"text","data":"("},{"name":"text","data":"2"},{"name":"text","data":"): "},{"name":"text","data":"284"},{"name":"text","data":"-"},{"name":"text","data":"292"},{"name":"text","data":"."},{"name":"text","data":"(in Chinese)"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.3788/ope.20182602.0284"}],"href":"http://dx.doi.org/10.3788/ope.20182602.0284"}}],"title":"Balanced amplified photodetector with low phase noise and large area"}]},{"id":"R5","label":"5","citation":[{"lang":"zh","text":[{"name":"text","data":"李浩"},{"name":"text","data":". "},{"name":"text","data":"航空激光氦光泵磁传感器光机系统设计及抗振动性能研究"},{"name":"text","data":"[D]."},{"name":"text","data":"长春"},{"name":"text","data":":"},{"name":"text","data":"中国科学院长春光学精密机械与物理研究所)"},{"name":"text","data":","},{"name":"text","data":"2022"},{"name":"text","data":"."}],"title":"航空激光氦光泵磁传感器光机系统设计及抗振动性能研究"},{"lang":"en","text":[{"name":"text","data":"LI H"},{"name":"text","data":". "},{"name":"text","data":"Research on Opto-mechanical System Design and Anti-vibration Performance of Aviation Laser Pumped He Magnetic Sensor"},{"name":"text","data":"[D]. "},{"name":"text","data":"Changchun"},{"name":"text","data":": "},{"name":"text","data":"Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences"},{"name":"text","data":", "},{"name":"text","data":"2022"},{"name":"text","data":". "},{"name":"text","data":"(in Chinese)"}],"title":"Research on Opto-mechanical System Design and Anti-vibration Performance of Aviation Laser Pumped He Magnetic Sensor"}]},{"id":"R6","label":"6","citation":[{"lang":"zh","text":[{"name":"text","data":"陈大勇"},{"name":"text","data":", "},{"name":"text","data":"史彦超"},{"name":"text","data":", "},{"name":"text","data":"崔敬忠"},{"name":"text","data":", "},{"name":"text","data":"等"},{"name":"text","data":". "},{"name":"text","data":"矢量原子磁力仪中旋转磁场产生装置的研制"},{"name":"text","data":"[J]. "},{"name":"text","data":"光学 精密工程"},{"name":"text","data":", "},{"name":"text","data":"2022"},{"name":"text","data":", "},{"name":"text","data":"30"},{"name":"text","data":"("},{"name":"text","data":"7"},{"name":"text","data":"): "},{"name":"text","data":"780"},{"name":"text","data":"-"},{"name":"text","data":"792"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.37188/OPE.20223007.0780"}],"href":"http://dx.doi.org/10.37188/OPE.20223007.0780"}}],"title":"矢量原子磁力仪中旋转磁场产生装置的研制"},{"lang":"en","text":[{"name":"text","data":"CHEN D Y"},{"name":"text","data":", "},{"name":"text","data":"SHI Y CH"},{"name":"text","data":", "},{"name":"text","data":"CUI J ZH"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Development of rotating magnetic field device for vector atomic magnetometers"},{"name":"text","data":"[J]. "},{"name":"text","data":"Optics and Precision Engineering"},{"name":"text","data":", "},{"name":"text","data":"2022"},{"name":"text","data":", "},{"name":"text","data":"30"},{"name":"text","data":"("},{"name":"text","data":"7"},{"name":"text","data":"): "},{"name":"text","data":"780"},{"name":"text","data":"-"},{"name":"text","data":"792"},{"name":"text","data":"."},{"name":"text","data":"(in Chinese)"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.37188/OPE.20223007.0780"}],"href":"http://dx.doi.org/10.37188/OPE.20223007.0780"}}],"title":"Development of rotating magnetic field device for vector atomic magnetometers"}]},{"id":"R7","label":"7","citation":[{"lang":"zh","text":[{"name":"text","data":"吴德伟"},{"name":"text","data":", "},{"name":"text","data":"苗强"},{"name":"text","data":", "},{"name":"text","data":"何思璇"},{"name":"text","data":", "},{"name":"text","data":"等"},{"name":"text","data":". "},{"name":"text","data":"量子传感的导航应用研究现状与展望"},{"name":"text","data":"[J]. "},{"name":"text","data":"空军工程大学学报(自然科学版)"},{"name":"text","data":", "},{"name":"text","data":"2021"},{"name":"text","data":", "},{"name":"text","data":"22"},{"name":"text","data":"("},{"name":"text","data":"6"},{"name":"text","data":"): "},{"name":"text","data":"67"},{"name":"text","data":"-"},{"name":"text","data":"76"},{"name":"text","data":"."}],"title":"量子传感的导航应用研究现状与展望"},{"lang":"en","text":[{"name":"text","data":"WU D W"},{"name":"text","data":", "},{"name":"text","data":"MIAO Q"},{"name":"text","data":", "},{"name":"text","data":"HE S X"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"A study of existing status and prospects for quantum sensor in navigation"},{"name":"text","data":"[J]. "},{"name":"text","data":"Journal of Air Force Engineering University (Natural Science Edition)"},{"name":"text","data":", "},{"name":"text","data":"2021"},{"name":"text","data":", "},{"name":"text","data":"22"},{"name":"text","data":"("},{"name":"text","data":"6"},{"name":"text","data":"): "},{"name":"text","data":"67"},{"name":"text","data":"-"},{"name":"text","data":"76"},{"name":"text","data":"."},{"name":"text","data":"(in Chinese)"}],"title":"A study of existing status and prospects for quantum sensor in navigation"}]},{"id":"R8","label":"8","citation":[{"lang":"en","text":[{"name":"text","data":"XUE L Y"},{"name":"text","data":", "},{"name":"text","data":"DONG H B"},{"name":"text","data":", "},{"name":"text","data":"LUO W"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Design of the self-oscillating loop of the optically pumped cesium magnetometer"},{"name":"text","data":"[J]. "},{"name":"text","data":"Journal of Physics: Conference Series"},{"name":"text","data":","},{"name":"text","data":"2021"},{"name":"text","data":","},{"name":"text","data":"1754"},{"name":"text","data":"("},{"name":"text","data":"1"},{"name":"text","data":"). "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1088/1742-6596/1754/1/012156"}],"href":"http://dx.doi.org/10.1088/1742-6596/1754/1/012156"}}],"title":"Design of the self-oscillating loop of the optically pumped cesium magnetometer"}]},{"id":"R9","label":"9","citation":[{"lang":"zh","text":[{"name":"text","data":"王维东"},{"name":"text","data":", "},{"name":"text","data":"李国祝"},{"name":"text","data":", "},{"name":"text","data":"梁尚清"},{"name":"text","data":", "},{"name":"text","data":"等"},{"name":"text","data":". "},{"name":"text","data":"基于原子磁力仪的高精度电流传感器"},{"name":"text","data":"[J]. "},{"name":"text","data":"仪表技术与传感器"},{"name":"text","data":", "},{"name":"text","data":"2021"},{"name":"text","data":"("},{"name":"text","data":"1"},{"name":"text","data":"): "},{"name":"text","data":"1"},{"name":"text","data":"-"},{"name":"text","data":"3, 8"},{"name":"text","data":"."}],"title":"基于原子磁力仪的高精度电流传感器"},{"lang":"en","text":[{"name":"text","data":"WANG W D"},{"name":"text","data":", "},{"name":"text","data":"LI G ZH"},{"name":"text","data":", "},{"name":"text","data":"LIANG SH Q"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"High accuracy current sensor based on atomic magnetometer"},{"name":"text","data":"[J]. "},{"name":"text","data":"Instrument Technique and Sensor"},{"name":"text","data":", "},{"name":"text","data":"2021"},{"name":"text","data":"("},{"name":"text","data":"1"},{"name":"text","data":"): "},{"name":"text","data":"1"},{"name":"text","data":"-"},{"name":"text","data":"3, 8"},{"name":"text","data":"."},{"name":"text","data":"(in Chinese)"}],"title":"High accuracy current sensor based on atomic magnetometer"}]},{"id":"R10","label":"10","citation":[{"lang":"en","text":[{"name":"text","data":"ZHANG R"},{"name":"text","data":", "},{"name":"text","data":"WU T"},{"name":"text","data":", "},{"name":"text","data":"CHEN J B"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Frequency response of optically pumped magnetometer with nonlinear Zeeman effect"},{"name":"text","data":"[J]. "},{"name":"text","data":"Applied Sciences"},{"name":"text","data":", "},{"name":"text","data":"2020"},{"name":"text","data":", "},{"name":"text","data":"10"},{"name":"text","data":"("},{"name":"text","data":"20"},{"name":"text","data":"): "},{"name":"text","data":"7031"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.3390/app10207031"}],"href":"http://dx.doi.org/10.3390/app10207031"}}],"title":"Frequency response of optically pumped magnetometer with nonlinear Zeeman effect"}]},{"id":"R11","label":"11","citation":[{"lang":"en","text":[{"name":"text","data":"HUNTER D"},{"name":"text","data":", "},{"name":"text","data":"DYER T E"},{"name":"text","data":", "},{"name":"text","data":"RIIS E"},{"name":"text","data":". "},{"name":"text","data":"Accurate optically pumped magnetometer based on Ramsey-style interrogation"},{"name":"text","data":"[J]. "},{"name":"text","data":"Optics Letters"},{"name":"text","data":", "},{"name":"text","data":"2022"},{"name":"text","data":", "},{"name":"text","data":"47"},{"name":"text","data":"("},{"name":"text","data":"5"},{"name":"text","data":"): "},{"name":"text","data":"1230"},{"name":"text","data":"-"},{"name":"text","data":"1233"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1364/ol.449180"}],"href":"http://dx.doi.org/10.1364/ol.449180"}}],"title":"Accurate optically pumped magnetometer based on Ramsey-style interrogation"}]},{"id":"R12","label":"12","citation":[{"lang":"zh","text":[{"name":"text","data":"温开旭"},{"name":"text","data":". "},{"name":"text","data":"铯光泵原子磁力仪自激反馈回路研究"},{"name":"text","data":"[D]. "},{"name":"text","data":"重庆"},{"name":"text","data":": "},{"name":"text","data":"重庆师范大学"},{"name":"text","data":", "},{"name":"text","data":"2019"},{"name":"text","data":"."}],"title":"铯光泵原子磁力仪自激反馈回路研究"},{"lang":"en","text":[{"name":"text","data":"WEN K X"},{"name":"text","data":". "},{"name":"text","data":"Study on Self-excited Feedback Loop of Optical Pumped Cesium Atomic Magnetometer"},{"name":"text","data":"[D]. "},{"name":"text","data":"Chongqing"},{"name":"text","data":": "},{"name":"text","data":"Chongqing Normal University"},{"name":"text","data":", "},{"name":"text","data":"2019"},{"name":"text","data":". "},{"name":"text","data":"(in Chinese)"}],"title":"Study on Self-excited Feedback Loop of Optical Pumped Cesium Atomic Magnetometer"}]},{"id":"R13","label":"13","citation":[{"lang":"zh","text":[{"name":"text","data":"谢胤"},{"name":"text","data":", "},{"name":"text","data":"罗方雪"},{"name":"text","data":", "},{"name":"text","data":"张樊"},{"name":"text","data":", "},{"name":"text","data":"等"},{"name":"text","data":". "},{"name":"text","data":"基于铯光泵磁力仪的地磁噪声补偿技术"},{"name":"text","data":"[J]. "},{"name":"text","data":"计测技术"},{"name":"text","data":", "},{"name":"text","data":"2022"},{"name":"text","data":", "},{"name":"text","data":"42"},{"name":"text","data":"("},{"name":"text","data":"1"},{"name":"text","data":"): "},{"name":"text","data":"26"},{"name":"text","data":"-"},{"name":"text","data":"31"},{"name":"text","data":"."}],"title":"基于铯光泵磁力仪的地磁噪声补偿技术"},{"lang":"en","text":[{"name":"text","data":"XIE Y"},{"name":"text","data":", "},{"name":"text","data":"LUO F X"},{"name":"text","data":", "},{"name":"text","data":"ZHANG F"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Geomagnetic noise compensation technology based on cesium optical-pumping magnetometer"},{"name":"text","data":"[J]. "},{"name":"text","data":"Metrology & Measurement Technology"},{"name":"text","data":", "},{"name":"text","data":"2022"},{"name":"text","data":", "},{"name":"text","data":"42"},{"name":"text","data":"("},{"name":"text","data":"1"},{"name":"text","data":"): "},{"name":"text","data":"26"},{"name":"text","data":"-"},{"name":"text","data":"31"},{"name":"text","data":"."},{"name":"text","data":"(in Chinese)"}],"title":"Geomagnetic noise compensation technology based on cesium optical-pumping magnetometer"}]},{"id":"R14","label":"14","citation":[{"lang":"en","text":[{"name":"text","data":"DONG H"},{"name":"text","data":", "},{"name":"text","data":"XUE L"},{"name":"text","data":", "},{"name":"text","data":"LUO W"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"A high-accuracy and non-intermittent frequency measurement method for Larmor signal of optically pumped cesium magnetometer"},{"name":"text","data":"[J]. "},{"name":"text","data":"Journal of Instrumentation"},{"name":"text","data":", "},{"name":"text","data":"2021"},{"name":"text","data":", "},{"name":"text","data":"16"},{"name":"text","data":"("},{"name":"text","data":"6"},{"name":"text","data":"): "},{"name":"text","data":"P06001"},{"name":"text","data":"."},{"name":"text","data":"(in Chinese)"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1088/1748-0221/16/06/p06001"}],"href":"http://dx.doi.org/10.1088/1748-0221/16/06/p06001"}}],"title":"A high-accuracy and non-intermittent frequency measurement method for Larmor signal of optically pumped cesium magnetometer"}]},{"id":"R15","label":"15","citation":[{"lang":"zh","text":[{"name":"text","data":"谢仕永"},{"name":"text","data":", "},{"name":"text","data":"王久旺"},{"name":"text","data":", "},{"name":"text","data":"孙勇"},{"name":"text","data":", "},{"name":"text","data":"等"},{"name":"text","data":". "},{"name":"text","data":"垂直腔面发射激光端面泵浦的高能量调"},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":" Nd: YAG激光"},{"name":"text","data":"[J]. "},{"name":"text","data":"光学 精密工程"},{"name":"text","data":", "},{"name":"text","data":"2020"},{"name":"text","data":", "},{"name":"text","data":"28"},{"name":"text","data":"("},{"name":"text","data":"3"},{"name":"text","data":"): "},{"name":"text","data":"558"},{"name":"text","data":"-"},{"name":"text","data":"564"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.3788/ope.20202803.0558"}],"href":"http://dx.doi.org/10.3788/ope.20202803.0558"}}],"title":"垂直腔面发射激光端面泵浦的高能量调Q Nd: YAG激光"},{"lang":"en","text":[{"name":"text","data":"XIE SH Y"},{"name":"text","data":", "},{"name":"text","data":"WANG J W"},{"name":"text","data":", "},{"name":"text","data":"SUN Y"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"VCSEL end-pumped high-energy "},{"name":"italic","data":[{"name":"text","data":"Q"}]},{"name":"text","data":"-switched Nd: YAG laser"},{"name":"text","data":"[J]. "},{"name":"text","data":"Optics and Precision Engineering"},{"name":"text","data":", "},{"name":"text","data":"2020"},{"name":"text","data":", "},{"name":"text","data":"28"},{"name":"text","data":"("},{"name":"text","data":"3"},{"name":"text","data":"): "},{"name":"text","data":"558"},{"name":"text","data":"-"},{"name":"text","data":"564"},{"name":"text","data":"."},{"name":"text","data":"(in Chinese)"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.3788/ope.20202803.0558"}],"href":"http://dx.doi.org/10.3788/ope.20202803.0558"}}],"title":"VCSEL end-pumped high-energy Q-switched Nd: YAG laser"}]},{"id":"R16","label":"16","citation":[{"lang":"en","text":[{"name":"text","data":"FARTHING W H"},{"name":"text","data":". "},{"name":"text","data":"The Magsat scalar magnetometer"},{"name":"text","data":"[J]. "},{"name":"text","data":"Johns Hopkins APL Technical Digest"},{"name":"text","data":", "},{"name":"text","data":"1980"},{"name":"text","data":","},{"name":"text","data":"1"},{"name":"text","data":"("},{"name":"text","data":"3"},{"name":"text","data":"): "},{"name":"text","data":"205"},{"name":"text","data":"-"},{"name":"text","data":"209"},{"name":"text","data":"."}],"title":"The Magsat scalar magnetometer"}]},{"id":"R17","label":"17","citation":[{"lang":"zh","text":[{"name":"text","data":"王超"},{"name":"text","data":", "},{"name":"text","data":"陈曙东"},{"name":"text","data":", "},{"name":"text","data":"张爽"},{"name":"text","data":". "},{"name":"text","data":"OVERHAUSER磁力仪灵敏度表征方法研究"},{"name":"text","data":"[J]. "},{"name":"text","data":"吉林大学学报(信息科学版)"},{"name":"text","data":", "},{"name":"text","data":"2016"},{"name":"text","data":", "},{"name":"text","data":"34"},{"name":"text","data":"("},{"name":"text","data":"3"},{"name":"text","data":"): "},{"name":"text","data":"401"},{"name":"text","data":"-"},{"name":"text","data":"406"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.3969/j.issn.1671-5896.2016.03.016"}],"href":"http://dx.doi.org/10.3969/j.issn.1671-5896.2016.03.016"}}],"title":"OVERHAUSER磁力仪灵敏度表征方法研究"},{"lang":"en","text":[{"name":"text","data":"WANG CH"},{"name":"text","data":", "},{"name":"text","data":"CHEN SH D"},{"name":"text","data":", "},{"name":"text","data":"ZHANG SH"},{"name":"text","data":". "},{"name":"text","data":"Study on method of sensitivity characterization for OVERHAUSER magnetometer"},{"name":"text","data":"[J]. "},{"name":"text","data":"Journal of Jilin University (Information Science Edition)"},{"name":"text","data":", "},{"name":"text","data":"2016"},{"name":"text","data":", "},{"name":"text","data":"34"},{"name":"text","data":"("},{"name":"text","data":"3"},{"name":"text","data":"): "},{"name":"text","data":"401"},{"name":"text","data":"-"},{"name":"text","data":"406"},{"name":"text","data":"."},{"name":"text","data":"(in Chinese)"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.3969/j.issn.1671-5896.2016.03.016"}],"href":"http://dx.doi.org/10.3969/j.issn.1671-5896.2016.03.016"}}],"title":"Study on method of sensitivity characterization for OVERHAUSER magnetometer"}]},{"id":"R18","label":"18","citation":[{"lang":"zh","text":[{"name":"text","data":"鄢建强"},{"name":"text","data":", "},{"name":"text","data":"崔敬忠"},{"name":"text","data":", "},{"name":"text","data":"缪培贤"},{"name":"text","data":", "},{"name":"text","data":"等"},{"name":"text","data":". "},{"name":"text","data":"原子磁力仪灵敏度标定方法研究"},{"name":"text","data":"[J]. "},{"name":"text","data":"真空与低温"},{"name":"text","data":", "},{"name":"text","data":"2018"},{"name":"text","data":", "},{"name":"text","data":"24"},{"name":"text","data":"("},{"name":"text","data":"4"},{"name":"text","data":"): "},{"name":"text","data":"259"},{"name":"text","data":"-"},{"name":"text","data":"265"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.3969/j.issn.1006-7086.2018.04.009"}],"href":"http://dx.doi.org/10.3969/j.issn.1006-7086.2018.04.009"}}],"title":"原子磁力仪灵敏度标定方法研究"},{"lang":"en","text":[{"name":"text","data":"YAN J Q"},{"name":"text","data":", "},{"name":"text","data":"CUI J ZH"},{"name":"text","data":", "},{"name":"text","data":"MIAO P X"},{"name":"text","data":", "},{"name":"text","data":"et al"},{"name":"text","data":". "},{"name":"text","data":"Study on the sensitivity calibration method of atomic magnetometer"},{"name":"text","data":"[J]. "},{"name":"text","data":"Vacuum and Cryogenics"},{"name":"text","data":", "},{"name":"text","data":"2018"},{"name":"text","data":", "},{"name":"text","data":"24"},{"name":"text","data":"("},{"name":"text","data":"4"},{"name":"text","data":"): "},{"name":"text","data":"259"},{"name":"text","data":"-"},{"name":"text","data":"265"},{"name":"text","data":"."},{"name":"text","data":"(in Chinese)"},{"name":"text","data":". "},{"name":"text","data":" doi: "},{"name":"extlink","data":{"text":[{"name":"text","data":"10.3969/j.issn.1006-7086.2018.04.009"}],"href":"http://dx.doi.org/10.3969/j.issn.1006-7086.2018.04.009"}}],"title":"Study on the sensitivity calibration method of atomic magnetometer"}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.37188/OPE.20233109.1325","clc":[[{"name":"text","data":"TH744"}],[{"name":"text","data":"TM937.1"}]],"dc":[{"name":"text","data":"A"}],"publisherid":"1004-924X(2023)09-1325-10","citeme":[{"data":[{"name":"text","data":"黄艺明,李绍良,骆曼箬等.双气室铯光泵磁力仪设计与验证[J].光学精密工程,2023,31(09):1325-1334."}],"text":"黄艺明,李绍良,骆曼箬等.双气室铯光泵磁力仪设计与验证[J].光学精密工程,2023,31(09):1325-1334."},{"data":[{"name":"text","data":"HUANG Yiming,LI Shaoliang,LUO Manruo,et al.Design and verification of dual-cell cesium optically pumped magnetometer[J].Optics and Precision Engineering,2023,31(09):1325-1334."}],"text":"HUANG Yiming,LI Shaoliang,LUO Manruo,et al.Design and verification of dual-cell cesium optically pumped magnetometer[J].Optics and Precision Engineering,2023,31(09):1325-1334."}],"fundinggroup":[{"lang":"zh","text":[{"name":"text","data":"上海航天先进技术联合研究基金资助项目(No.USCAST2019-23);上海交通大学“深蓝计划”基金资助项目(No.SL2021ZD202);“十三五”装备预研领域基金资助项目(No.61405170103)"}]}],"history":{"received":"2022-09-22","revised":"2022-10-14","ppub":"2023-05-10","opub":"2023-05-15"}},"appendix":[],"banner":"37009037","type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"光学精密工程","issue":"9","volume":"31","originalSource":[]}