浏览全部资源
扫码关注微信
1.北京航空航天大学 仪器科学与光电工程学院,北京 100191
2.北京华航无线电测量研究所,北京 100010
E-mail: yangzh@buaa.edu.cn
收稿日期:2020-10-14,
修回日期:2020-10-29,
纸质出版日期:2021-05-15
移动端阅览
赵梓栋,杨照华,李高亮.基于测量基优化的低采样率单像素成像[J].光学精密工程,2021,29(05):1008-1013.
ZHAO Zi-dong,YANG Zhao-hua,LI Gao-liang.Sub-Nyquist single-pixel imaging by optimizing sampling basis[J].Optics and Precision Engineering,2021,29(05):1008-1013.
赵梓栋,杨照华,李高亮.基于测量基优化的低采样率单像素成像[J].光学精密工程,2021,29(05):1008-1013. DOI: 10.37188/OPE.20212905.1008.
ZHAO Zi-dong,YANG Zhao-hua,LI Gao-liang.Sub-Nyquist single-pixel imaging by optimizing sampling basis[J].Optics and Precision Engineering,2021,29(05):1008-1013. DOI: 10.37188/OPE.20212905.1008.
单像素成像结合压缩感知相关算法利用很少一部分无空间分辨的桶探测器采样值就能重构出成像物体的高质量图像。然而,随机地选取投射的散斑序列无法在更低的采样率下成像。为进一步实现单像素成像在极低采样率下的成像效果,本文提出了基于数据驱动的哈达玛矩阵排序方案,利用对整个数据集的训练效果来自适应地选择透射的散斑信号序列,在重构图像过程中使用两种不同的压缩感知相关算法在数值仿真和实验条件下实现了5%超低采样率下对成像物体的图像重构,并和目前最优的哈达玛矩阵排序方案进行了比较,发现在1%~5%的采样率下本文方法的重构效果更优。本文研究成果可用于提升单像素成像的成像速度,在成像制导和医学成像中有着极大的应用前景。
Single-pixel imaging combined with compressed sensing can reconstruct high-quality images of an imaged object from a small part of the measurement results of a bucket detector without a spatial resolution. However, at low sampling rates, randomly selected projected speckle sequences limit the quality of reconstructed images. To achieve improved imaging at very low sampling rates, this paper proposes a data-driven Hadamard matrix sorting scheme, which uses the training effect of an entire dataset to adaptively select transmitted speckle signal sequences. In the process of reconstructing an image, two different compressed-sensing-related algorithms are employed to realize the image reconstruction of an imaged object at an ultra-low sampling rate of 5% in a numerical simulation and physical experiment, and it is sorted with the current optimal correlation Hadamard matrix. The schemes are compared, and it is found that the reconstruction effect of the method proposed in this paper is better at sampling rates of 1% to 5%. The research results presented in this paper can be used to increase the imaging speed of single-pixel imaging, and can be applied to fields such as imaging guidance and medical imaging.
ROMBERG J . Imaging via compressive sampling [J]. IEEE Signal Processing Magazine , 2008 , 25 ( 2 ): 14 - 20 .
FERRI F , MAGATTI D , LUGIATO L A , et al . Differential ghost imaging [J]. Physical Review Letters , 2010 , 104 ( 25 ): 253603 .
YU W K . Super sub-nyquist single-pixel imaging by means of cake-cutting hadamard basis sort [J]. Sensors (Basel, Switzerland) , 2019 , 19 ( 19 ): E4122 .
EDGAR M P , GIBSON G M , BOWMAN R W , et al . Simultaneous real-time visible and infrared video with single-pixel detectors [J]. Scientific Reports , 2015 , 5 : 10669 .
SUN M J , MENG L T , EDGAR M P , et al . A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging [J]. Scientific Reports , 2017 , 7 ( 1 ): 3464 .
QI W F , ZHOU J J . Distribution of 0 and 1 in the highest level of primitive sequences over Z/(2 e ) [J]. Science in China ,Ser A, 1997 , 40 ( 6 ): 606 - 611 .
李明飞 , 阎璐 , 杨然 , 等 . 基于Hadamard矩阵优化排序的快速单像素成像 [J]. 物理学报 , 2019 , 68 ( 6 ): 87 - 94 .
LI M F , YAN L , YANG R , et al . Fast single-pixel imaging based on optimized reordering Hadamard basis [J]. Acta Physica Sinica , 2019 , 68 ( 6 ): 87 - 94 . (in Chinese)
CZAJKOWSKI K M , PASTUSZCZAK A , KOTYŃSKI R . Real-time single-pixel video imaging with Fourier domain regularization [J]. Optics Express , 2018 , 26 ( 16 ): 20009 - 20022 .
HAMOOD M T , BOUSSAKTA S . Fast Walsh–hadamard-Fourier transform algorithm [J]. IEEE Transactions on Signal Processing , 2011 , 59 ( 11 ): 5627 - 5631 .
AGOSTINELLI F , HOFFMAN M , SADOWSKI P , et al . Learning activation functions to improve deep neural networks [J]. Computer Science , 2015 :arXiv: 1412.6830 .
ZHANG Z , WANG X , ZHENG G , et al . Fast Fourier single-pixel imaging via binary illumination [J]. Scientific Reports , 2017 , 7 ( 1 ): 12029 .
LI CH B . An Efficient Algorithm for Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing [D]. Houston : Rice University , 2010 .
0
浏览量
1116
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构