浏览全部资源
扫码关注微信
中国北方车辆研究所, 北京 100072
[ "姜雨彤(1987-),女,吉林长春人,博士,副研究员,主要从事机器学习、计算机视觉、图像处理等研究工作。E-mail: jiangyutong201@163.com" ]
收稿日期:2021-07-08,
修回日期:2021-08-11,
纸质出版日期:2022-05-25
移动端阅览
姜雨彤,杨忠琳,朱梦琪等.适应性双通道先验的图像去雾方法[J].光学精密工程,2022,30(10):1246-1262.
JIANG Yutong,YANG Zhonglin,ZHU Mengqi,et al.Image dehazing method based on adaptive bi-channel priors[J].Optics and Precision Engineering,2022,30(10):1246-1262.
姜雨彤,杨忠琳,朱梦琪等.适应性双通道先验的图像去雾方法[J].光学精密工程,2022,30(10):1246-1262. DOI: 10.37188/OPE.20223010.1246.
JIANG Yutong,YANG Zhonglin,ZHU Mengqi,et al.Image dehazing method based on adaptive bi-channel priors[J].Optics and Precision Engineering,2022,30(10):1246-1262. DOI: 10.37188/OPE.20223010.1246.
图像是现代化战争的重要信息来源,雾天环境下图像质量下降,严重妨碍光电侦察识别能力。为提高雾气环境下图像有效利用性,开展了适应性双通道先验的图像去雾方法研究。首先,以暗通道先验理论与亮通道先验理论为基础,将有雾图像从 RGB 空间转换到 HSV 颜色空间,使用饱和度和亮度分量的阈值来检测有雾图像中分别不满足暗通道先验和亮通道先验的白色或亮色像素点和黑色或暗色像素点;然后,选用超像素作为暗通道和亮通道计算的局部区域,估计局部透射率和大气光值;最后,由于亮暗双通道方法对白色和黑色像素点的透射率和大气光值进行错误估计,采用本文提出的适应性双通道先验方法进行矫正,通过导引滤波器对透射率图和大气光图进行滤波,代入到大气散射模型中,求得清晰的去雾图像。实验结果表明,去雾后的图像恢复了真实颜色、视觉效果自然、清晰,准确高效地实现图像的去雾处理;在FRIDA数据集上进行去雾处理,采用本文方法的去雾图像与真值的均方误差优于现有方法,相较于双通道先验去雾方法的均方差值降低了15%。
Image is an important source of information for modern warfare
and the quality of image decreases in foggy environment
which seriously hinders the ability of photoelectric reconnaissance and identification. In order to improve the effective utilization of images in foggy environment
an adaptive bi-channel prior image dehazing method was developed. First
based on the dark channel prior and the bright channel prior theories
the hazy images are converted from RGB to HSV color space
and the thresholds of saturation and luminance components are used to detect white or light pixels and black or dark pixels in hazy images that do not satisfy the dark and light channel priors
respectively. Then
superpixels are selected as the local area for the calculation of the dark and bright channels
and the local transmittance and atmospheric light values are estimated. Finally
adaptive bi-channel priors are developed to rectify any incorrect estimation of transmission and atmospheric light values for both white and black pixels. The transmittance map and atmospheric light map are filtered by the guided filter
and then substituted into the atmospheric scattering model to obtain a clear dehaze image. Experimental results show that the dehazed image restores the true color
the visual effect is natural and clear
and the dehazing process of the image is accurately and efficiently achieved. The dehazing process is performed on the FRIDA database
the mean square error between the dehazed image and the ground truth using the method in this paper is better than that of the existing method
which are 15% lower than that yielded by the BiCP method.
TAREL J P , HAUTIÈRE N . Fast visibility restoration from a single color or gray level image [C]. 2009 IEEE 12th International Conference on Computer Vision. September 29 - October 2 , 2009 , Kyoto, Japan. IEEE , 2009: 2201 - 2208 . doi: 10.1109/iccv.2009.5459251 http://dx.doi.org/10.1109/iccv.2009.5459251
HE K M , SUN J , TANG X O . Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011 , 33 ( 12 ): 2341 - 2353 . doi: 10.1109/tpami.2010.168 http://dx.doi.org/10.1109/tpami.2010.168
韩昊男 , 钱锋 , 吕建威 , 等 . 改进暗通道先验的航空图像去雾 [J]. 光学 精密工程 , 2020 , 28 ( 6 ): 1387 - 1394 . doi: 10.3788/ope.20202806.1387 http://dx.doi.org/10.3788/ope.20202806.1387
HAN H N , QIAN F , LÜ J W , et al . Aerial image dehazing using improved dark channel prior [J]. Opt. Precision Eng. , 2020 , 28 ( 6 ): 1387 - 1394 . (in Chinese) . doi: 10.3788/ope.20202806.1387 http://dx.doi.org/10.3788/ope.20202806.1387
YU H F , LI X B , LOU Q , et al . Underwater image enhancement based on DCP and depth transmission map [J]. Multimedia Tools and Applications , 2020 , 79 ( 27/28 ): 20373 - 20390 . doi: 10.1007/s11042-020-08701-3 http://dx.doi.org/10.1007/s11042-020-08701-3
PANAGOPOULOS A , WANG C H , SAMARAS D , et al . Estimating shadows with the bright channel cue [C]. Trends and Topics in Computer Vision , 2012 . doi: 10.1007/978-3-642-35740-4_1 http://dx.doi.org/10.1007/978-3-642-35740-4_1
李佳童 , 章毓晋 . 图像去雾算法的改进和主客观性能评价 [J]. 光学 精密工程 , 2017 , 25 ( 3 ): 735 - 741 . doi: 10.3788/OPE.20172503.0735 http://dx.doi.org/10.3788/OPE.20172503.0735
LI J T , ZHANG Y J . Improvements of image haze removal algorithm and its subjective and objective performance evaluation [J]. Opt. Precision Eng. , 2017 , 25 ( 3 ): 735 - 741 . (in Chinese) . doi: 10.3788/OPE.20172503.0735 http://dx.doi.org/10.3788/OPE.20172503.0735
DAI C G , LIN M X , WU X J , et al . Single hazy image restoration using robust atmospheric scattering model [J]. Signal Processing , 2020 , 166 : 107257 . doi: 10.1016/j.sigpro.2019.107257 http://dx.doi.org/10.1016/j.sigpro.2019.107257
HE K M , SUN J , TANG X O . Guided image filtering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2013 , 35 ( 6 ): 1397 - 1409 . doi: 10.1109/tpami.2012.213 http://dx.doi.org/10.1109/tpami.2012.213
HONG S , KIM M , KANG M G . Single image dehazing via atmospheric scattering model-based image fusion [J]. Signal Processing , 2021 , 178 : 107798 . doi: 10.1016/j.sigpro.2020.107798 http://dx.doi.org/10.1016/j.sigpro.2020.107798
KUMAR M , JINDAL S R . Fusion of RGB and HSV colour space for foggy image quality enhancement [J]. Multimedia Tools and Applications , 2019 , 78 ( 8 ): 9791 - 9799 . doi: 10.1007/s11042-018-6599-8 http://dx.doi.org/10.1007/s11042-018-6599-8
YEH C H , KANG L W , LEE M S , et al . Haze effect removal from image via haze density estimation in optical model [J]. Optics Express , 2013 , 21 ( 22 ): 27127 - 27141 . doi: 10.1364/oe.21.027127 http://dx.doi.org/10.1364/oe.21.027127
TAN Y B , WANG G Y . Image haze removal based on superpixels and Markov random field [J]. IEEE Access , 2020 , 8 : 60728 - 60736 . doi: 10.1109/access.2020.2982910 http://dx.doi.org/10.1109/access.2020.2982910
JANG J , SHIN M , LIM S , et al . Intelligent image-based railway inspection system using deep learning-based object detection and weber contrast-based image comparison [J]. Sensors (Basel, Switzerland) , 2019 , 19 ( 21 ): 4738 . doi: 10.3390/s19214738 http://dx.doi.org/10.3390/s19214738
YANG Y , WANG Z W . Haze removal: push DCP at the edge [J]. IEEE Signal Processing Letters , 2020 , 27 : 1405 - 1409 . doi: 10.1109/lsp.2020.3013741 http://dx.doi.org/10.1109/lsp.2020.3013741
FU X , LIN Q , GUO W , et al . Single image de-haze under non-uniform illumination using bright channel prior [J]. Journal of Theoretical and Applied Information Technology , 2013 , 48 ( 3 ): 1843 - 1848 .
张闯 , 王亚明 , 陈苏婷 . 基于空间依存的无参考图像质量评价 [J]. 光学 精密工程 , 2015 , 23 ( 11 ): 3211 - 3218 . doi: 10.3788/ope.20152311.3211 http://dx.doi.org/10.3788/ope.20152311.3211
ZHANG C , WANG Y M , CHEN S T . No-reference image quality assessment based on spatial dependency [J]. Opt. Precision Eng. , 2015 , 23 ( 11 ): 3211 - 3218 . (in Chinese) . doi: 10.3788/ope.20152311.3211 http://dx.doi.org/10.3788/ope.20152311.3211
BERMAN D , TREIBITZ T , AVIDAN S . Non-local image dehazing [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition . 2730,2016 , Las Vegas, NV, USA . IEEE , 2016 : 1674 - 1682 . doi: 10.1109/cvpr.2016.185 http://dx.doi.org/10.1109/cvpr.2016.185
QIN X , WANG Z L , BAI Y C , et al . FFA-net: feature fusion attention network for single image dehazing [J]. Proceedings of the AAAI Conference on Artificial Intelligence , 2020 , 34 ( 7 ): 11908 - 11915 . doi: 10.1609/aaai.v34i07.6865 http://dx.doi.org/10.1609/aaai.v34i07.6865
0
浏览量
758
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构