浏览全部资源
扫码关注微信
1.江西理工大学 理学院,江西 赣州 341000
2.江西理工大学 电气工程与自动化学院,江西 赣州 341000
[ "鄢化彪(1978-),男,江西丰城人,副教授,硕士生导师,分别于2002年、2008年在江西理工大学获得学士、硕士学位,主要从事复杂系统建模及深度学习方面的研究。E-mail: yanhuabiao@jxust.edu.cn" ]
[ "徐方奇(2000-),女,河南长垣人,硕士研究生,2017年于上海海洋大学获得学士学位,现就读于江西理工大学,主要从事深度学习、三维重建方面的研究。E-mail:xufangqi777@163.com" ]
[ "黄绿娥(1981-),女,江西井冈山人,博士,副教授,2008年于北京交通大学获得硕士学位,2019年于南昌大学获得机械工程博士学位,主要从事图像处理及深度学习方面的研究。E-mail: 9320080310@jxust.edu.cn" ]
收稿日期:2022-11-14,
修回日期:2022-12-26,
纸质出版日期:2023-08-25
移动端阅览
鄢化彪,徐方奇,黄绿娥等.基于深度学习的多视图立体重建方法综述[J].光学精密工程,2023,31(16):2444-2464.
YAN Huabiao,XU Fangqi,HUANG Lü'er,et al.Review of multi-view stereo reconstruction methods based on deep learning[J].Optics and Precision Engineering,2023,31(16):2444-2464.
鄢化彪,徐方奇,黄绿娥等.基于深度学习的多视图立体重建方法综述[J].光学精密工程,2023,31(16):2444-2464. DOI: 10.37188/OPE.20233116.2444.
YAN Huabiao,XU Fangqi,HUANG Lü'er,et al.Review of multi-view stereo reconstruction methods based on deep learning[J].Optics and Precision Engineering,2023,31(16):2444-2464. DOI: 10.37188/OPE.20233116.2444.
多视图立体重建(Multi-view stereo Reconstruction,MVS Reconstruction)的目标是根据一组已知摄像机参数的多视角图像来重建场景的三维模型,是近年来三维重建的一类主流方法。本文针对最新的近百个基于深度学习的MVS方法做了较为系统的算法评估对比。首先,对现有的基于监督学习的MVS方法,按照特征提取、代价体构建、代价体正则化和深度回归的重建流程对各算法进行梳理,重点对代价体构建和正则化这两阶段的改进策略进行归纳总结,对于无监督的MVS方法,主要分析各算法损失项的设计,并按照其训练方式进行分类;其次,总结了MVS方法常用的实验数据集及其对应的性能评价指标,进一步研究特征金字塔结构、注意力机制、由粗到精等策略的引入对MVS网络性能的影响;此外,介绍了MVS方法的具体应用场景,包括数字孪生、自动驾驶、机器人技术、遗产保护、生物科学等领域;最后,提出关于MVS改进方向的建议,并对多视图三维重建未来的技术难点与研究方向进行探讨。
The goal of Multi-view stereo (MVS) Reconstruction is to reconstruct a 3D model of a scene based on a set of multi-view images with known camera parameters, which is a mainstream method of 3D reconstruction in recent years. This paper provides a algorithm evaluation comparison for the latest hundreds of MVS methods based on deep learning. First, we sorted out the existing supervised learning-based MVS methods according to the reconstruction process of feature extraction, cost volume construction, cost volume regularization and depth regression, focusing on the summary of improvement strategies in the two stages of cost volume construction and cost volume regularization. For the unsupervised MVS methods, we mainly analyzed the design of the loss terms of each algorithm. It is classified according to its training mode. Secondly, we summarized the common datasets of MVS methods and their corresponding performance evaluation indexes, and further studied the introduction of strategies such as feature pyramid network, attention mechanism, coarse-to-fine strategy on the performance of MVS networks. In addition, it introduced the specific application scenarios of MVS methods, including digital twin, autonomous driving, robotics, heritage conservation, bioscience and other fields. Finally, we made some suggestions for the improvement direction of MVS methods, and also discussed the future technical difficulties and the research directions of MVS 3D reconstruction.
FURUKAWA Y , HERNÁNDEZ C . Multi-view stereo: a tutorial [J]. Foundations and Trends® in Computer Graphics and Vision , 2015 , 9 ( 1/2 ): 1 - 148 . doi: 10.1561/0600000052 http://dx.doi.org/10.1561/0600000052
SMITH M W , CARRIVICK J L , QUINCEY D J . Structure from motion photogrammetry in physical geography [J]. Progress in Physical Geography: Earth and Environment , 2016 , 40 ( 2 ): 247 - 275 . doi: 10.1177/0309133315615805 http://dx.doi.org/10.1177/0309133315615805
刘东生 , 陈建林 , 费点 , 等 . 基于深度相机的大场景三维重建 [J]. 光学 精密工程 , 2020 , 28 ( 1 ): 234 - 243 . doi: 10.3788/ope.20202801.0234 http://dx.doi.org/10.3788/ope.20202801.0234
LIU D S , CHEN J L , FEI D , et al . Three-dimensional reconstruction of large-scale scene based on depth camera [J]. Opt. Precision Eng. , 2020 , 28 ( 1 ): 234 - 243 . (in Chinese) . doi: 10.3788/ope.20202801.0234 http://dx.doi.org/10.3788/ope.20202801.0234
SCHÖNBERGER J L , ZHENG E L , FRAHM J M , et al . Pixelwise View Selection for Unstructured Multi-View Stereo [M]. Computer Vision - ECCV 2016 . Cham : Springer International Publishing , 2016 : 501 - 518 . doi: 10.1007/978-3-319-46487-9_31 http://dx.doi.org/10.1007/978-3-319-46487-9_31
XU Q S , TAO W B . Multi-scale geometric consistency guided multi-view stereo [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 15 - 20 , 2019, Long Beach, CA, USA. IEEE , 2020: 5478 - 5487 . doi: 10.1109/cvpr.2019.00563 http://dx.doi.org/10.1109/cvpr.2019.00563
张宝祥 , 玉振明 , 杨秋慧 . 基于Harris-SIFT算法和全卷积深度预测的显微镜成像的三维重建研究 [J]. 光学 精密工程 , 2022 , 30 ( 14 ): 1669 - 1681 . doi: 10.37188/OPE.20223014.1669 http://dx.doi.org/10.37188/OPE.20223014.1669
ZHANG B X , YU Z M , YANG Q H . Research on 3D reconstruction of microscope imaging based on Harris-SIFT algorithm and full convolution depth prediction [J]. Opt. Precision Eng. , 2022 , 30 ( 14 ): 1669 - 1681 . (in Chinese) . doi: 10.37188/OPE.20223014.1669 http://dx.doi.org/10.37188/OPE.20223014.1669
JI M Q , GALL J , ZHENG H T , et al . SurfaceNet: an End-to-End 3D neural network for multiview stereopsis [C]. 2017 IEEE International Conference on Computer Vision (ICCV) . 22 - 29 , 2017, Venice, Italy. IEEE , 2017: 2326 - 2334 . doi: 10.1109/iccv.2017.253 http://dx.doi.org/10.1109/iccv.2017.253
KAR A , HÄNE C , MALIK J . Learning a Multi-View Stereo Machine [EB/OL]. 2017 : arXiv : 1708 . 05375 . https://arxiv.org/abs/1708.05375 https://arxiv.org/abs/1708.05375
AANÆS H , JENSEN R R , VOGIATZIS G , et al . Large-scale data for multiple-view stereopsis [J]. International Journal of Computer Vision , 2016 , 120 ( 2 ): 153 - 168 . doi: 10.1007/s11263-016-0902-9 http://dx.doi.org/10.1007/s11263-016-0902-9
KNAPITSCH A , PARK J , ZHOU Q Y , et al . Tanks and temples: benchmarking large-scale scene reconstruction [J]. ACM Transactions on Graphics , 36 ( 4 ): 1 - 13 . doi: 10.1145/3072959.3073599 http://dx.doi.org/10.1145/3072959.3073599
YAO Y , LUO Z X , LI S W , et al . MVSNet : Depth Inference for Unstructured Multi-View Stereo [M]. Computer Vision-ECCV 2018 . Cham : Springer International Publishing , 2018 : 785 - 801 . doi: 10.1007/978-3-030-01237-3_47 http://dx.doi.org/10.1007/978-3-030-01237-3_47
LI L Y , LI X Y , JIANG L Y , et al . A review on deep learning techniques for cloud detection methodologies and challenges [J]. Signal, Image and Video Processing , 2021 , 15 ( 7 ): 1527 - 1535 . doi: 10.1007/s11760-021-01885-7 http://dx.doi.org/10.1007/s11760-021-01885-7
ZHU Q , MIN C , WEI Z , et al . Deep Learning for Multi-View Stereo via Plane Sweep: a Survey [EB/OL]. 2021 : arXiv : 2106 . 15328 . https://arxiv.org/abs/2106.15328 https://arxiv.org/abs/2106.15328
WANG X , WANG C , LIU B , et al . Multi-view stereo in the deep learning era: a comprehensive review [J]. Displays , 2021 , 70 : 102102 . doi: 10.1016/j.displa.2021.102102 http://dx.doi.org/10.1016/j.displa.2021.102102
GALLUP D , FRAHM J M , MORDOHAI P , et al . Real-time plane-sweeping stereo with multiple sweeping directions [C]. 2007 IEEE Conference on Computer Vision and Pattern Recognition . 17 - 22 , 2007, Minneapolis, MN, USA. IEEE , 2007: 1 - 8 . doi: 10.1109/cvpr.2007.383245 http://dx.doi.org/10.1109/cvpr.2007.383245
YAO Y , LUO Z X , LI S W , et al . Recurrent MVSNet for high-resolution multi-view stereo depth inference [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 15 - 20 , 2019, Long Beach, CA, USA. IEEE , 2020: 5520 - 5529 . doi: 10.1109/cvpr.2019.00567 http://dx.doi.org/10.1109/cvpr.2019.00567
CHEN R , HAN S F , XU J , et al . Point-based multi-view stereo network [C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 272,2019 , Seoul, Korea (South). IEEE , 2020 : 1538 - 1547 . doi: 10.1109/iccv.2019.00162 http://dx.doi.org/10.1109/iccv.2019.00162
XUE Y Z , CHEN J S , WAN W T , et al . MVSCRF: learning multi-view stereo with conditional random fields [C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 272,2019 , Seoul, Korea (South). IEEE , 2020 : 4311 - 4320 . doi: 10.1109/iccv.2019.00441 http://dx.doi.org/10.1109/iccv.2019.00441
GU X D , FAN Z W , ZHU S Y , et al . Cascade cost volume for high-resolution multi-view stereo and stereo matching [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 13 - 19 , 2020, Seattle, WA, USA. IEEE , 2020: 2492 - 2501 . doi: 10.1109/cvpr42600.2020.00257 http://dx.doi.org/10.1109/cvpr42600.2020.00257
YANG J Y , MAO W , ALVAREZ J M , et al . Cost volume pyramid based depth inference for multi-view stereo [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 13 - 19 , 2020, Seattle, WA, USA. IEEE , 2020: 4876 - 4885 . doi: 10.1109/cvpr42600.2020.00493 http://dx.doi.org/10.1109/cvpr42600.2020.00493
RONNEBERGER O , FISCHER P , BROX T . U-net : Convolutional Networks for Biomedical Image Segmentation [M]. Lecture Notes in Computer Science . Cham : Springer International Publishing , 2015 : 234 - 241 . doi: 10.1007/978-3-319-24574-4_28 http://dx.doi.org/10.1007/978-3-319-24574-4_28
ZHANG J , YAO Y , LI S , et al . Visibility-Aware Multi-View Stereo Network [EB/OL]. 2020 : arXiv : 2008 . 07928 . https://arxiv.org/abs/2008. 07928 https://arxiv.org/abs/2008.07928
SHI Y F , XI J H , HU D W , et al . RayMVSNet: learning ray-based 1D implicit fields for accurate multi-view stereo [C]. IEEE Transactions on Pattern Analysis and Machine Intelligence.17 , 2023 , IEEE , 2023: 1 - 17 . doi: 10.1109/tpami.2023.3296163 http://dx.doi.org/10.1109/tpami.2023.3296163
YI H W , WEI Z Z , DING M Y , et al . Pyramid Multi-View Stereo Net with Self-Adaptive View Aggregation [M]. Computer Vision - ECCV 2020 . Cham : Springer International Publishing , 2020 : 766 - 782 . doi: 10.1007/978-3-030-58545-7_44 http://dx.doi.org/10.1007/978-3-030-58545-7_44
YU F , KOLTUN V . Multi-Scale Context Aggregation by Dilated Convolutions [EB/OL]. 2015 : arXiv : 1511 . 07122 . https://arxiv.org/abs/1511.07122 https://arxiv.org/abs/1511.07122 . doi: 10.48550/arXiv.1511.07122 http://dx.doi.org/10.48550/arXiv.1511.07122
LIN T Y , DOLLÁR P , GIRSHICK R , et al . Feature pyramid networks for object detection [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . 21 - 26 , 2017, Honolulu, HI, USA. IEEE , 2017: 936 - 944 . doi: 10.1109/cvpr.2017.106 http://dx.doi.org/10.1109/cvpr.2017.106
CHENG S , XU Z X , ZHU S L , et al . Deep stereo using adaptive thin volume representation with uncertainty awareness [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 13 - 19 , 2020, Seattle, WA, USA. IEEE , 2020: 2521 - 2531 . doi: 10.1109/cvpr42600.2020.00260 http://dx.doi.org/10.1109/cvpr42600.2020.00260
LI Y , LI W Y , ZHAO Z J , et al . DRI-MVSNet: a depth residual inference network for multi-view stereo images [J]. PLoS One , 2022 , 17 ( 3 ): e0264721 . doi: 10.1371/journal.pone.0264721 http://dx.doi.org/10.1371/journal.pone.0264721
LI H , XIONG P , AN J , et al . Pyramid Attention Network for Semantic Segmentation [EB/OL]. 2018 : arXiv : 1805 . 10180 . https://arxiv.org/abs/1805.10180 https://arxiv.org/abs/1805.10180
ZHANG K , LIU M Y , ZHANG J L , et al . PA-MVSNet: sparse-to-dense multi-view stereo with pyramid attention [J]. IEEE Access , 2021 , 9 : 27908 - 27915 . doi: 10.1109/access.2021.3058522 http://dx.doi.org/10.1109/access.2021.3058522
ANZHU , YU , et al . Attention aware cost volume pyramid based multi-view stereo network for 3D reconstruction [J]. ISPRS Journal of Photogrammetry and Remote Sensing , 2021 , 175 : 448 - 460 . doi: 10.1016/j.isprsjprs.2021.03.010 http://dx.doi.org/10.1016/j.isprsjprs.2021.03.010
LI J J , BAI Z Y , CHENG W , et al . Feature pyramid multi-view stereo network based on self-attention mechanism [C]. Proceedings of the 2022 5th International Conference on Image and Graphics Processing. January 7 - 9 , 2022, Beijing, China. New York : ACM , 2022: 226 - 233 . doi: 10.1145/3512388.3512422 http://dx.doi.org/10.1145/3512388.3512422
PARMAR N , RAMACHANDRAN P , VASWANI A , et al . Stand-alone self-attention in vision models [C]. 2019 Neural Information Processing Systems (NeurIPS). Vancouver , Canada . ACM , 2019 : 13 .
ZHANG X D , HU Y T , WANG H C , et al . Long-range attention network for multi-view stereo [C]. 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). 38,2021 , Waikoloa, HI, USA. IEEE , 2021 : 3781 - 3790 . doi: 10.1109/wacv48630.2021.00383 http://dx.doi.org/10.1109/wacv48630.2021.00383
LIU W J , WANG J K , QU H C , et al . Hierarchical MVSNet with cost volume separation and fusion based on U-shape feature extraction [J]. Multimedia Systems , 2023 , 29 ( 1 ): 377 - 387 . doi: 10.1007/s00530-022-01009-2 http://dx.doi.org/10.1007/s00530-022-01009-2
WOO S , PARK J , LEE J Y , et al . CBAM : Convolutional Block Attention Module [M]. Computer Vision - ECCV 2018 . Cham : Springer International Publishing , 2018 : 3 - 19 . doi: 10.1007/978-3-030-01234-2_1 http://dx.doi.org/10.1007/978-3-030-01234-2_1
CAO C , REN X , FU Y . MVSFormer: multi-view stereo with pre-trained vision transformers and temperature-based depth [J]. arXiv preprint arXiv: 2208.02541 , 2022 .
DOSOVITSKIY A , BEYER L , KOLESNIKOV A , et al . An Image is Worth 16 x 16 Words: Transformers for Image Recognition at Scale[EB/OL]. 2020 : arXiv : 2010 . 11929 . https://arxiv.org/abs/2010.11929 https://arxiv.org/abs/2010.11929
SAEED S , LEE S , CHO Y , et al . ASPPMVSNet: a high-receptive-field multiview stereo network for dense three-dimensional reconstruction [J]. ETRI Journal , 2022 , 44 ( 6 ): 1034 - 1046 . doi: 10.4218/etrij.2021-0305 http://dx.doi.org/10.4218/etrij.2021-0305
CHEN L C , PAPANDREOU G , KOKKINOS I , et al . DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2018 , 40 ( 4 ): 834 - 848 . doi: 10.1109/tpami.2017.2699184 http://dx.doi.org/10.1109/tpami.2017.2699184
WEI Z Z , ZHU Q T , MIN C , et al . AA-RMVSNet: adaptive aggregation recurrent multi-view stereo network [C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV) . 10 - 17 , 2021, Montreal, QC, Canada. IEEE , 2022: 6167 - 6176 . doi: 10.1109/iccv48922.2021.00613 http://dx.doi.org/10.1109/iccv48922.2021.00613
MASSON J E N , PETRY M R , COUTINHO D F , et al . Deformable convolutions in multi-view stereo [J]. Image and Vision Computing , 2022 , 118 : 104369 . doi: 10.1016/j.imavis.2021.104369 http://dx.doi.org/10.1016/j.imavis.2021.104369
CHENG W , BAI Z Y , LI J J , et al . ADIM-MVSNet: adaptive depth interval multi-view stereo network for 3d reconstruction [C]. Proceedings of the 2022 5th International Conference on Image and Graphics Processing . 79,2022 , Beijing, China. New York : ACM , 2022 : 281 - 287 . doi: 10.1145/3512388.3512429 http://dx.doi.org/10.1145/3512388.3512429
DAI J F , QI H Z , XIONG Y W , et al . Deformable convolutional networks [C]. 2017 IEEE International Conference on Computer Vision (ICCV) . 22 - 29 , 2017, Venice, Italy. IEEE , 2017: 764 - 773 . doi: 10.1109/iccv.2017.89 http://dx.doi.org/10.1109/iccv.2017.89
DING Y K , YUAN W T , ZHU Q T , et al . TransMVSNet: global context-aware multi-view stereo network with transformers [C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 18 - 24 , 2022, New Orleans, LA, USA. IEEE , 2022: 8575 - 8584 . doi: 10.1109/cvpr52688.2022.00839 http://dx.doi.org/10.1109/cvpr52688.2022.00839
GIANG KT , SONG S , JO S . Curvature-guided dynamic scale networks for multi-view stereo [J]. arXiv preprint arXiv: 2112.05999 , 2022 .
YAN J F , WEI Z Z , YI H W , et al . Dense hybrid recurrent multi-view stereo net with dynamic consistency checking [C]. Computer Vision - ECCV 2020 : 16th European Conference, Glasgow, UK , 23 - 28 , 2020, Proceedings, Part IV. New York : ACM , 2020: 674 - 689 . doi: 10.1007/978-3-030-58548-8_39 http://dx.doi.org/10.1007/978-3-030-58548-8_39
YU Z H , GAO S H . Fast-MVSNet: sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 13 - 19 , 2020, Seattle, WA, USA. IEEE , 2020: 1946 - 1955 . doi: 10.1109/cvpr42600.2020.00202 http://dx.doi.org/10.1109/cvpr42600.2020.00202
CHEN R , HAN S F , XU J , et al . Visibility-aware point-based multi-view stereo network [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2020 , 43 ( 10 ): 3695 - 3708 . doi: 10.1109/tpami.2020.2988729 http://dx.doi.org/10.1109/tpami.2020.2988729
WEILHARTER R , FRAUNDORFER F . HighRes-MVSNet: a fast multi-view stereo network for dense 3D reconstruction from high-resolution images [J]. IEEE Access , 2021 , 9 : 11306 - 11315 . doi: 10.1109/access.2021.3050556 http://dx.doi.org/10.1109/access.2021.3050556
YI P , TANG S , YAO J . DDR-Net: Learning Multi-Stage Multi-View Stereo with Dynamic Depth Range [EB/OL]. 2021 : arXiv : 2103 . 14275 . https://arxiv.org/abs/2103.14275 https://arxiv.org/abs/2103.14275
VASWANI A , SHAZEER N , PARMAR N , et al . Attention is all you need [C]. Proceedings of the 31st International Conference on Neural Information Processing Systems. December 4 - 9 , 2017, Long Beach, California, USA. New York : ACM , 2017: 6000 - 6010 .
WANG X F , ZHU Z , HUANG G , et al . MVSTER : Epipolar Transformer for Efficient Multi-View Stereo [M]. Lecture Notes in Computer Science . Cham : Springer Nature Switzerland , 2022 : 573 - 591 . doi: 10.1007/978-3-031-19821-2_33 http://dx.doi.org/10.1007/978-3-031-19821-2_33
ZHU J , PENG B , LI W , et al . Multi-view Stereo with Transformer [EB/OL]. 2021 : arXiv : 2112 . 00336 . https://arxiv.org/abs/2112.00336 https://arxiv.org/abs/2112.00336
LIAO J , DING Y , SHAVIT Y , et al . WT-MVSNet: Window-Based Transformers for Multi-View Stereo [EB/OL]. 2022 : arXiv : 2205 . 14319 . https://arxiv.org/abs/2205.14319 https://arxiv.org/abs/2205.14319
HE Y H , YAN R , FRAGKIADAKI K , et al . Epipolar transformers [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 13 - 19 , 2020, Seattle, WA, USA. IEEE , 2020: 7776 - 7785 . doi: 10.1109/cvpr42600.2020.00780 http://dx.doi.org/10.1109/cvpr42600.2020.00780
CHEN P H , YANG H C , CHEN K W , et al . MVSNet: learning depth-based attention pyramid features for multi-view stereo [J]. IEEE Transactions on Image Processing , 2020 , 29 : 7261 - 7273 . doi: 10.1109/tip.2020.3000611 http://dx.doi.org/10.1109/tip.2020.3000611
BENGIO Y , LOURADOUR J , COLLOBERT R , et al . Curriculum learning [C]. Proceedings of the 26th Annual International Conference on Machine Learning. June 14 - 18 , 2009, Montreal, Quebec, Canada. New York : ACM , 2009: 41 - 48 . doi: 10.1145/1553374.1553380 http://dx.doi.org/10.1145/1553374.1553380
GUO X Y , YANG K , YANG W K , et al . Group-wise correlation stereo network [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 15 - 20 , 2019, Long Beach, CA, USA. IEEE , 2020: 3268 - 3277 . doi: 10.1109/cvpr.2019.00339 http://dx.doi.org/10.1109/cvpr.2019.00339
XU Q S , TAO W B . Learning inverse depth regression for multi-view stereo with correlation cost volume [J]. Proceedings of the AAAI Conference on Artificial Intelligence , 2020 , 34 ( 7 ): 12508 - 12515 . doi: 10.1609/aaai.v34i07.6939 http://dx.doi.org/10.1609/aaai.v34i07.6939
XU Q , TAO W . PVSNet: Pixelwise Visibility-Aware Multi-View Stereo Network [EB/OL]. 2020 : arXiv : 2007 . 07714 . https://arxiv.org/abs/2007.07714 https://arxiv.org/abs/2007.07714
WANG F , GALLIANI S , VOGEL C , et al . PatchmatchNet: learned multi-view patchmatch stereo [C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 20 - 25 , 2021, Nashville, TN, USA. IEEE , 2021: 14189 - 14198 . doi: 10.1109/cvpr46437.2021.01397 http://dx.doi.org/10.1109/cvpr46437.2021.01397
SONG B , HU X , XIAO J , et al . Implicit neural refinement based multi-view stereo network with adaptive correlation [J]. Image and Vision Computing , 2022 , 124 : 104511 . doi: 10.1016/j.imavis.2022.104511 http://dx.doi.org/10.1016/j.imavis.2022.104511
CAI Y C , LI L , WANG D , et al . MFNet: Multi-level fusion aware feature pyramid based multi-view stereo network for 3D reconstruction [J]. Applied Intelligence , 2023 , 53 ( 4 ): 4289 - 4301 . doi: 10.1007/s10489-022-03754-3 http://dx.doi.org/10.1007/s10489-022-03754-3
GAO S Y , LI Z X , WANG Z Q . Cost Volume Pyramid Network with Multi-Strategies Range Searching for Multi-View Stereo [M]. Advances in Computer Graphics . Cham : Springer Nature Switzerland , 2022 : 157 - 169 . doi: 10.1007/978-3-031-23473-6_13 http://dx.doi.org/10.1007/978-3-031-23473-6_13
LUO K Y , GUAN T , JU L L , et al . P-MVSNet: learning patch-wise matching confidence aggregation for multi-view stereo [C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). October 27 - November 2 , 2019 , Seoul, Korea (South). IEEE , 2020 : 10451 - 10460 . doi: 10.1109/iccv.2019.01055 http://dx.doi.org/10.1109/iccv.2019.01055
MA X J , GONG Y , WANG Q R , et al . EPP-MVSNet: epipolar-assembling based depth prediction for multi-view stereo [C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV) . 10 - 17 , 2021, Montreal, QC, Canada. IEEE , 2022: 5712 - 5720 . doi: 10.1109/iccv48922.2021.00568 http://dx.doi.org/10.1109/iccv48922.2021.00568
PENG R , WANG R J , WANG Z Y , et al . Rethinking depth estimation for multi-view stereo: a unified representation [C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 18 - 24 , 2022, New Orleans, LA, USA. IEEE , 2022: 8635 - 8644 . doi: 10.1109/cvpr52688.2022.00845 http://dx.doi.org/10.1109/cvpr52688.2022.00845
XU H F , ZHANG J Y . AANet: adaptive aggregation network for efficient stereo matching [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 13 - 19 , 2020, Seattle, WA, USA. IEEE , 2020: 1956 - 1965 . doi: 10.1109/cvpr42600.2020.00203 http://dx.doi.org/10.1109/cvpr42600.2020.00203
SORMANN C , KNÖBELREITER P , KUHN A , et al . BP-MVSNet: belief-propagation-layers for multi-view-stereo [C]. 2020 International Conference on 3D Vision (3DV). 2528,2020 , Fukuoka, Japan. IEEE , 2021 : 394 - 403 . doi: 10.1109/3dv50981.2020.00049 http://dx.doi.org/10.1109/3dv50981.2020.00049
QI Y , SU W , XU Q , et al . Sparse prior guided deep multi-view stereo [J]. Computers & Graphics , 2022 , 107 : 1 - 9 . doi: 10.1016/j.cag.2022.06.014 http://dx.doi.org/10.1016/j.cag.2022.06.014
LIU J , JI S P . A novel recurrent encoder-decoder structure for large-scale multi-view stereo reconstruction from an open aerial dataset [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 13 - 19 , 2020, Seattle, WA, USA. IEEE , 2020: 6049 - 6058 . doi: 10.1109/cvpr42600.2020.00609 http://dx.doi.org/10.1109/cvpr42600.2020.00609
XU Q , OSWALD M R , TAO W , et al . Non-local recurrent regularization networks for multi-view stereo [J]. arXiv preprint arXiv: 2110.06436 , 2021 .
WANG F , GALLIANI S , VOGEL C , et al . IterMVS: iterative probability estimation for efficient multi-view stereo [C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 18 - 24 , 2022, New Orleans, LA, USA. IEEE , 2022: 8596 - 8605 . doi: 10.1109/cvpr52688.2022.00841 http://dx.doi.org/10.1109/cvpr52688.2022.00841
MI Z X , DI C , XU D . Generalized binary search network for highly-efficient multi-view stereo [C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 18 - 24 , 2022, New Orleans, LA, USA. IEEE , 2022: 12981 - 12990 . doi: 10.1109/cvpr52688.2022.01265 http://dx.doi.org/10.1109/cvpr52688.2022.01265
LEE J Y , DEGOL J , ZOU C H , et al . PatchMatch-RL: deep mvs with pixelwise depth, normal, and visibility [C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV) . 10 - 17 , 2021, Montreal, QC, Canada. IEEE , 2022: 6138 - 6147 . doi: 10.1109/iccv48922.2021.00610 http://dx.doi.org/10.1109/iccv48922.2021.00610
YANG J Y , ALVAREZ J M , LIU M M . Non-parametric depth distribution modelling based depth inference for multi-view stereo [C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 18 - 24 , 2022, New Orleans, LA, USA. IEEE , 2022: 8616 - 8624 . doi: 10.1109/cvpr52688.2022.00843 http://dx.doi.org/10.1109/cvpr52688.2022.00843
WANG S Q , LI B , DAI Y C . Efficient multi-view stereo by iterative dynamic cost volume [C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 18 - 24 , 2022, New Orleans, LA, USA. IEEE , 2022: 8645 - 8654 . doi: 10.1109/cvpr52688.2022.00846 http://dx.doi.org/10.1109/cvpr52688.2022.00846
LI Y , ZHAO Z , FAN J , et al . ADR-MVSNet: a cascade network for 3D point cloud reconstruction with pixel occlusion [J]. Pattern Recognition , 2022 , 125 : 108516 . doi: 10.1016/j.patcog.2021.108516 http://dx.doi.org/10.1016/j.patcog.2021.108516
LAFFERTY J , MCCALLUM A , PEREIRA FC . Conditional random fields: probabilistic models for segmenting and labeling sequence data [C]. Proc. 18th International Conf. on Machine Learning . 2001 .
ZHENG S , JAYASUMANA S , ROMERA-PAREDES B , et al . Conditional random fields as recurrent neural networks [C]. 2015 IEEE International Conference on Computer Vision (ICCV) . 7 - 13 , 2015, Santiago, Chile. IEEE , 2016: 1529 - 1537 . doi: 10.1109/iccv.2015.179 http://dx.doi.org/10.1109/iccv.2015.179
KNÖBELREITER P , SORMANN C , SHEKHOVTSOV A , et al . Belief propagation reloaded: learning BP-Layers for labeling problems [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 13 - 19 , 2020, Seattle, WA, USA. IEEE , 2020: 7897 - 7906 . doi: 10.1109/cvpr42600.2020.00792 http://dx.doi.org/10.1109/cvpr42600.2020.00792
LUO K Y , GUAN T , JU L L , et al . Attention-aware multi-view stereo [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 13 - 19 , 2020, Seattle, WA, USA. IEEE , 2020: 1587 - 1596 . doi: 10.1109/cvpr42600.2020.00166 http://dx.doi.org/10.1109/cvpr42600.2020.00166
WEI Z Z , ZHU Q T , MIN C , et al . Bidirectional hybrid LSTM based recurrent neural network for multi-view stereo [J]. IEEE Transactions on Visualization and Computer Graphics , 2022 , PP(99): 1. doi: 10.1109/tvcg.2022.3165860 http://dx.doi.org/10.1109/tvcg.2022.3165860
LIN T Y , GOYAL P , GIRSHICK R , et al . Focal loss for dense object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2020 , 42 ( 2 ): 318 - 327 . doi: 10.1109/tpami.2018.2858826 http://dx.doi.org/10.1109/tpami.2018.2858826
ZHOU H Z , ZHAO H L , WANG Q , et al . Miper-MVS: multi-scale iterative probability estimation with refinement for efficient multi-view stereo [J]. Neural Networks , 2023 , 162 : 502 - 515 . doi: 10.1016/j.neunet.2023.03.012 http://dx.doi.org/10.1016/j.neunet.2023.03.012
DING Y K , LI Z Y , HUANG D H , et al . Enhancing Multi-View stereo with contrastive matching and weighted focal loss [C]. 2022 IEEE International Conference on Image Processing (ICIP). 1619,2022 , Bordeaux, France. IEEE , 2022 : 821 - 825 . doi: 10.1109/icip46576.2022.9897772 http://dx.doi.org/10.1109/icip46576.2022.9897772
IBRAHIMLI N , LEDOUX H , KOOIJ J , et al . DDL-MVS: Depth Discontinuity Learning for MVS Networks [EB/OL]. 2022 : arXiv : 2203 . 01391 . https://arxiv.org/abs/2203.01391 https://arxiv.org/abs/2203.01391 . doi: 10.3390/rs15122970 http://dx.doi.org/10.3390/rs15122970
KHOT T , AGRAWAL S , TULSIANI S , et al . Learning unsupervised multi-view stereopsis via robust photometric consistency [J]. arXiv preprint arXiv: 1905 . 02706 v 2 , 2019 .
DAI Y C , ZHU Z D , RAO Z B , et al . MVS2: Deep unsupervised multi-view stereo with multi-view symmetry [C]. 2019 International Conference on 3D Vision (3DV). 1619,2019 , Quebec City, QC, Canada. IEEE , 2019 : 1 - 8 . doi: 10.1109/3dv.2019.00010 http://dx.doi.org/10.1109/3dv.2019.00010
MALLICK A , STÜCKLER J , LENSCH H . Learning to adapt multi-view stereo by self-supervision [J]. arXiv preprint arXiv : 2009.13278 , 2020 .
FINN C , ABBEEL P , LEVINE S . Model-agnostic meta-learning for fast adaptation of deep networks [C]. Proceedings of the 34th International Conference on Machine Learning - Volume 70. August 6 - 11 , 2017, Sydney, NSW, Australia. New York : ACM , 2017: 1126 - 1135 . doi: 10.1109/icra.2016.7487173 http://dx.doi.org/10.1109/icra.2016.7487173
HUANG B C , YI H W , HUANG C , et al . M3VSNET: unsupervised multi-metric multi-view stereo network [C]. 2021 IEEE International Conference on Image Processing (ICIP) . 19 - 22 , 2021, Anchorage, AK, USA. IEEE , 2021: 3163 - 3167 . doi: 10.1109/icip42928.2021.9506469 http://dx.doi.org/10.1109/icip42928.2021.9506469
XU H B , ZHOU Z P , QIAO Y , et al . Self-supervised multi-view stereo via effective co-segmentation and data-augmentation [J]. Proceedings of the AAAI Conference on Artificial Intelligence , 2021 , 35 ( 4 ): 3030 - 3038 . doi: 10.1609/aaai.v35i4.16411 http://dx.doi.org/10.1609/aaai.v35i4.16411
YANG J Y , ALVAREZ J M , LIU M M . Self-supervised learning of depth inference for multi-view stereo [C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 20 - 25 , 2021, Nashville, TN, USA. IEEE , 2021: 7522 - 7530 . doi: 10.1109/cvpr46437.2021.00744 http://dx.doi.org/10.1109/cvpr46437.2021.00744
XU H B , ZHOU Z P , WANG Y L , et al . Digging into uncertainty in self-supervised multi-view stereo [C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV) . 10 - 17 , 2021, Montreal, QC, Canada. IEEE , 2022: 6058 - 6067 . doi: 10.1109/iccv48922.2021.00602 http://dx.doi.org/10.1109/iccv48922.2021.00602
QI S , SANG X , YAN B , et al . Unsupervised multi-view stereo network based on multi-stage depth estimation [J]. Image and Vision Computing , 2022 , 122 : 104449 . doi: 10.1016/j.imavis.2022.104449 http://dx.doi.org/10.1016/j.imavis.2022.104449
DONG H , YAO J . PatchMVSNet: patch-wise unsuper-vised multi-view stereo for weakly-textured surface reconstruction [J]. arXiv preprint arXiv: 2203.02156 , 2022 .
CHANG D , BOŽIČ A , ZHANG T , et al . RC-MVSNet : Unsupervised Multi-View Stereo with Neural Rendering [M]. Lecture Notes in Computer Science . Cham : Springer Nature Switzerland , 2022 : 665 - 680 . doi: 10.1007/978-3-031-19821-2_38 http://dx.doi.org/10.1007/978-3-031-19821-2_38
MILDENHALL B , SRINIVASAN P P , TANCIK M , et al . NeRF [J]. Communications of the ACM , 2022 , 65 ( 1 ): 99 - 106 . doi: 10.1145/3503250 http://dx.doi.org/10.1145/3503250
CHEN A P , XU Z X , ZHAO F Q , et al . MVSNeRF: fast generalizable radiance field reconstruction from multi-view stereo [C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV) . 10 - 17 , 2021, Montreal, QC, Canada. IEEE , 2022: 14104 - 14113 . doi: 10.1109/iccv48922.2021.01386 http://dx.doi.org/10.1109/iccv48922.2021.01386
XU Q G , XU Z X , PHILIP J , et al . Point-nerf: point-based neural radiance fields [C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 18 - 24 , 2022, New Orleans, LA, USA. IEEE , 2022: 5428 - 5438 . doi: 10.1109/cvpr52688.2022.00536 http://dx.doi.org/10.1109/cvpr52688.2022.00536
ZHANG J Z , JI M Q , WANG G Y , et al . SurRF: unsupervised multi-view stereopsis by learning surface radiance field [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2022 , 44 ( 11 ): 7912 - 7927 . doi: 10.1109/tpami.2021.3116695 http://dx.doi.org/10.1109/tpami.2021.3116695
HINTON G , VINYALS O , DEAN J . Distilling the Knowledge in a Neural Network [EB/OL]. 2015 : arXiv : 1503 . 02531 . https://arxiv.org/abs/1503.02531 https://arxiv.org/abs/1503.02531 . doi: 10.5860/choice.189890 http://dx.doi.org/10.5860/choice.189890
DING Y K , ZHU Q T , LIU X Y , et al . KD-MVS : Knowledge Distillation Based Self-Supervised Learning for Multi-View Stereo [M]. Lecture Notes in Computer Science . Cham : Springer Nature Switzerland , 2022 : 630 - 646 . doi: 10.1007/978-3-031-19821-2_36 http://dx.doi.org/10.1007/978-3-031-19821-2_36
UMMENHOFER , BENJAMI , VLADLEN KOLTUN , et al . Adaptive surface reconstruction with multiscale convolutional kernels [J]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV): 5631 - 5640 .
SCHÖPS T , SATTLER T , POLLEFEYS M . BAD SLAM: bundle adjusted direct RGB-D SLAM [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 15 - 20 , 2019, Long Beach, CA, USA. IEEE , 2020: 134 - 144 . doi: 10.1109/cvpr.2019.00022 http://dx.doi.org/10.1109/cvpr.2019.00022
YAO Y , LUO Z X , LI S W , et al . BlendedMVS: a large-scale dataset for generalized multi-view stereo networks [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 13 - 19 , 2020, Seattle, WA, USA. IEEE , 2020: 1787 - 1796 . doi: 10.1109/cvpr42600.2020.00186 http://dx.doi.org/10.1109/cvpr42600.2020.00186
ZHANG J N , ZHANG J Z , MAO S , et al . GigaMVS: a benchmark for ultra-large-scale gigapixel-level 3D reconstruction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2022 , 44 ( 11 ): 7534 - 7550 . doi: 10.1109/tpami.2021.3115028 http://dx.doi.org/10.1109/tpami.2021.3115028
MA Z Y , TEED Z , DENG J . Multiview Stereo with Cascaded Epipolar RAFT [M]. Lecture Notes in Computer Science . Cham : Springer Nature Switzerland , 2022 : 734 - 750 . doi: 10.1007/978-3-031-19821-2_42 http://dx.doi.org/10.1007/978-3-031-19821-2_42
LI Z X , ZUO W M , WANG Z Q , et al . Confidence-based large-scale dense multi-view stereo [J]. IEEE Transactions on Image Processing , 2020 , 29 : 7176 - 7191 . doi: 10.1109/tip.2020.2999853 http://dx.doi.org/10.1109/tip.2020.2999853
LI W , ZHU D , WANG Q . A single view leaf reconstruction method based on the fusion of ResNet and differentiable render in plant growth digital twin system [J]. Computers and Electronics in Agriculture , 2022 , 193 : 106712 . doi: 10.1016/j.compag.2022.106712 http://dx.doi.org/10.1016/j.compag.2022.106712
DENG X P , QIU S , JIN W Q , et al . Three-dimensional reconstruction method for bionic compound-eye system based on MVSNet network [J]. Electronics , 2022 , 11 ( 11 ): 1790 . doi: 10.3390/electronics11111790 http://dx.doi.org/10.3390/electronics11111790
郝雯 , 张雯静 , 梁玮 , 等 . 面向三维点云的场景识别方法综述 [J]. 光学 精密工程 , 2022 , 30 ( 16 ): 1988 - 2005 . doi: 10.37188/OPE.20223016.1988 http://dx.doi.org/10.37188/OPE.20223016.1988
HAO W , ZHANG W J , LIANG W , et al . Scene recognition for 3D point clouds: a review [J]. Opt. Precision Eng. , 2022 , 30 ( 16 ): 1988 - 2005 . (in Chinese) . doi: 10.37188/OPE.20223016.1988 http://dx.doi.org/10.37188/OPE.20223016.1988
EBNER T , FELDMANN I , RENAULT S , et al . Multi-view reconstruction of dynamic real-world objects and their integration in augmented and virtual reality applications [J]. Journal of the Society for Information Display , 2017 , 25 ( 3 ): 151 - 157 . doi: 10.1002/jsid.538 http://dx.doi.org/10.1002/jsid.538
李兆歆 , 蒋浩 , 刘衍青 , 等 . 丝路文化虚拟体验中的多视角立体重建技术研究 [J]. 计算机学报 , 2022 , 45 ( 3 ): 500 - 512 . doi: 10.11897/SP.J.1016.2022.00500 http://dx.doi.org/10.11897/SP.J.1016.2022.00500
LI Z X , JIANG H , LIU Y Q , et al . Research on multi-view stereo 3D reconstruction in virtual reality system of silk road cultural inheritance [J]. Chinese Journal of Computers , 2022 , 45 ( 3 ): 500 - 512 . (in Chinese) . doi: 10.11897/SP.J.1016.2022.00500 http://dx.doi.org/10.11897/SP.J.1016.2022.00500
余加勇 , 薛现凯 , 陈昌富 , 等 . 基于无人机倾斜摄影的公路边坡三维重建与灾害识别方法 [J]. 中国公路学报 , 2022 , 35 ( 4 ): 77 - 86 . doi: 10.3969/j.issn.1001-7372.2022.04.005 http://dx.doi.org/10.3969/j.issn.1001-7372.2022.04.005
YU J Y , XUE X K , CHEN C F , et al . Three-dimensional reconstruction and disaster identification of highway slope using unmanned aerial vehicle-based oblique photography technique [J]. China Journal of Highway and Transport , 2022 , 35 ( 4 ): 77 - 86 . (in Chinese) . doi: 10.3969/j.issn.1001-7372.2022.04.005 http://dx.doi.org/10.3969/j.issn.1001-7372.2022.04.005
HU Z , HOU Y , TAO P , et al . IMGTR: Image-triangle based multi-view 3D reconstruction for urban scenes [J]. ISPRS Journal of Photogrammetry and Remote Sensing , 2021 , 181 : 191 - 204 . doi: 10.1016/j.isprsjprs.2021.09.009 http://dx.doi.org/10.1016/j.isprsjprs.2021.09.009
ORSINGHER M , ZANI P , MEDICI P , et al . Revisiting patchmatch multi-view stereo for urban 3D reconstruction [C]. 2022 IEEE Intelligent Vehicles Symposium (IV) . 4 - 9 , 2022, Aachen, Germany. IEEE , 2022: 190 - 196 . doi: 10.1109/iv51971.2022.9827259 http://dx.doi.org/10.1109/iv51971.2022.9827259
ZHOU Y X , EIMEN R L , SEIBEL E J , et al . Cost-efficient video synthesis and evaluation for development of virtual 3D endoscopy [J]. IEEE Journal of Translational Engineering in Health and Medicine , 2021 , 9 : 1 - 11 . doi: 10.1109/jtehm.2021.3132193 http://dx.doi.org/10.1109/jtehm.2021.3132193
何东健 , 熊虹婷 , 芦忠忠 , 等 . 基于多视角立体视觉的拔节期玉米水分胁迫预测模型 [J]. 农业机械学报 , 2020 , 51 ( 6 ): 248 - 257 . doi: 10.6041/j.issn.1000-1298.2020.06.026 http://dx.doi.org/10.6041/j.issn.1000-1298.2020.06.026
HE D J , XIONG H T , LU Z Z , et al . Predictive model of maize moisture stress during jointing stage based on multi-view stereo vision [J]. Transactions of the Chinese Society for Agricultural Machinery , 2020 , 51 ( 6 ): 248 - 257 . (in Chinese) . doi: 10.6041/j.issn.1000-1298.2020.06.026 http://dx.doi.org/10.6041/j.issn.1000-1298.2020.06.026
王思启 , 张家强 , 李丽圆 , 等 . MVSNet在空间目标三维重建中的应用 [J]. 中国激光 , 2022 , 49 ( 23 ): 2310003 .
WANG S Q , ZHANG J Q , LI L Y , et al . Application of MVSNet in 3D reconstruction of space objects [J]. Chinese Journal of Lasers , 2022 , 49 ( 23 ): 2310003 . (in Chinese)
GÓMEZ A , RANDALL G , FACCIOLO G , et al . An Experimental comparison of multi-view stereo approaches on satellite images [C]. 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) . 3 - 8 , 2022, Waikoloa, HI, USA. IEEE , 2022: 707 - 716 . doi: 10.1109/wacv51458.2022.00078 http://dx.doi.org/10.1109/wacv51458.2022.00078
LU J C , LI Y X , ZUO Z C . SatMVS : A Novel 3 D Reconstruction Pipeline for Remote Sensing Satellite Imagery [M]. Lecture Notes in Electrical Engineering . Singapore : Springer Nature Singapore , 2022 : 521 - 538 . doi: 10.1007/978-981-16-8154-7_39 http://dx.doi.org/10.1007/978-981-16-8154-7_39
0
浏览量
278
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构