浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
[ "朱熠(1987-), 男, 辽宁沈阳人, 博士研究生, 2011年于大连理工大学获得学士学位, 主要从事主动光学和面型主动校正的研究.E-mail:13998211017@139.com" ]
李宏壮(1980-), 男, 黑龙江巴彦人, 博士, 研究员, 2003年于吉林大学获得学士学位, 2008年于中科院长春光学精密机械与物理研究所获得博士学位, 主要从事主动光学、光学设计和光学测试的研究.E-mail:jilinbayan@163.com LI Hong-zhuang, E-mail:jilinbayan@163.com
收稿日期:2017-06-01,
录用日期:2017-7-4,
纸质出版日期:2017-10-25
移动端阅览
朱熠, 陈涛, 王建立, 等. 1.23 m SiC主镜的本征模式主动光学校正[J]. 光学 精密工程, 2017,25(10):2551-2563.
Yi ZHU, Tao CHEN, Jian-li WANG, et al. Active correction of 1.23 m SiC mirror using bending mode[J]. Optics and precision engineering, 2017, 25(10): 2551-2563.
朱熠, 陈涛, 王建立, 等. 1.23 m SiC主镜的本征模式主动光学校正[J]. 光学 精密工程, 2017,25(10):2551-2563. DOI: 10.3788/OPE.20172510.2551.
Yi ZHU, Tao CHEN, Jian-li WANG, et al. Active correction of 1.23 m SiC mirror using bending mode[J]. Optics and precision engineering, 2017, 25(10): 2551-2563. DOI: 10.3788/OPE.20172510.2551.
采用直接最小二乘法和自由谐振法对大口径高刚度SiC主镜进行主动校正易引入较多解算误差,故本文提出以主镜的本征模式进行主镜面型校正来优化解算校正力幅值,以改进系统校正效果。该方法首先对主镜的响应矩阵进行一系列数学转换,得到一组相互正交的主镜本征模式,然后以各模式面形拟合校正目标,解算校正力。对1.23 m SiC主镜和主动支撑系统进行了有限元建模,通过仿真验证了提出方法的正确性。在此基础上,在搭建的1.23 m SiC主镜主动光学实验系统上进行了主动光学校正实验,并针对实验系统进一步优化了提出的方法。实验结果显示:利用该方法可将实验系统主镜面形误差由0.23λRMS校正至0.048λRMS,表明以主镜本征模式进行主动校正,可有效抑制解算校正力幅值,提高系统校正能力。该方法适用于大口径、高刚度SiC主镜的主动校正。
As active correction of a large aperture SiC mirror with high stiffness is vulnerable to many calculation errors by direction least square method or free resonance method
this paper proposes a primary surface correction algorithm using bending mode to calculate and optimize the active force and to improve the correction capability. Firstly
a series of mathematical transformations were performed on the influence matrix of the primary mirror
and a set of orthogonal bending modes of primary mirror were obtained. Then
correction targets were fitted in bending modes to calculate the correction force. An 1.23 m SiC mirror and a support system were modeled by finite element analysis and the algorithm was verified by simulation experiments. Moreover
an active support system for the 1.23 m SiC mirror was set up to correct primary surface and a further optimization for the algorithm was conducted based on this system. The experiments show that the surface error is corrected from 0.23λ RMS to 0.048λ RMS by the proposed bending mode. Results of analysis and experiment demonstrate that the algorithm by bending mode efficiently reduces active force ranges and improves correction capability. It is significant for the active correction of large aperture SiC mirrors with high stiffness.
WILSON R N, FRANZA F, NOETHE L. Active optics: Ⅰ. A system for optimizing the optical quality and reducing the costs of large telescopes[J]. Journal of Modern Optics, 1987, 34(4): 485-509.
MARTIN H M, CALLAHAN S P, CUERDEN B, et al.. Active supports and force optimization for the MMT primary mirror[J]. SPIE, 1998, 3352: 412-423.
MARTIN H M, CUERDEN B, DETTMANN L R, et al.. Active optics and force optimization for the first 8.4-m LBT mirror[J]. SPIE, 2004, 5489: 826-837.
STEPP L M, DIYDEN D, NICOLAS R, et al.. Actively controlled 3.5-m WIYN Telescope[J]. SPIE, 1991, 1542: 364-376.
KIMBRELL J E, GREENWALD D. AEOS 3.67-m telescope primary mirror active control system[J]. SPIE, 1998, 3352: 400-411.
STEPP L M, HUANG E, CHO M K. Gemini primary mirror support system[J]. SPIE, 1994, 2199: 223-238.
LOUSBERG G P, MUDRY E, BASTIN C, et al.. Active optics system for the 4m telescope of the Eastern Anatolia Observatory (DAG)[J]. SPIE, 2016, 9912: 99126F.
吴小霞, 李剑锋, 宋淑梅, 等. 4 m SiC轻量化主镜的主动支撑系统[J].光学 精密工程, 2014, 22(9): 2451-2457.
WU X X, LI J F, SONG SH M, et al.. Active support system for 4 m SiC lightweight primary mirror[J]. Opt. Precision Eng., 2014, 22(9): 2451-2457. (in Chinese)
CHO M K. Active optics performance study of the primary mirror of the GEMINI Telescopes Project[J]. SPIE, 1997, 2871: 272-290.
LIANG M, KRABBENDAM V, CLAVER C F, et al.. Active optics in large synoptic survey telescope[J]. SPIE, 2012, 8444: 84444Q.
SCHIPANI P, NOETHE L, MAGRIN D, et al.. Active optics system of the VLT Survey Telescope[J]. Applied Optics, 2016, 55(7): 1573-1583.
陈夫林, 张景旭, 吴小霞, 等. 620 mm薄镜面的主动支撑结构及面形校正[J].光学 精密工程, 2011, 19(5): 1022-1029.
CHEN F L, ZHANG J X, WU X X, et al.. Supporting structure of 620 mm thin primary mirror and its active surface correction[J]. Opt. Precision Eng., 2011, 19(5): 1022-1029. (in Chinese)
李宏壮, 张振铎, 王建立, 等.基于浮动支撑的620 mm薄反射镜面形主动校正[J].光学学报, 2013, 33(5): 0511001.
LI H ZH, ZHANG ZH D, WANG J L, et al.. Active surface-profile correction of 620 mm thin-mirror based on floatation support[J]. Acta Optica Sinica, 2013, 33(5): 0511001. (in Chinese)
李剑锋, 吴小霞, 李玉霞, 等.大口径主镜位置的实时检测[J].光学 精密工程, 2016, 24(11): 2721-2729.
LI J F, WU X X, LI Y X, et al.. On line measurement of position for large primary mirror[J]. Opt. Precision Eng., 2016, 24(11): 2721-2729. (in Chinese)
李剑锋, 吴小霞, 邵亮.大口径SiC主镜主动支撑研究及促动器设计[J].红外与激光工程, 2016, 45(7): 0718003.
LI J F, WU X X, SHAO L. Study on active support for large SiC primary mirror and force actualtor design[J]. Infrared and Laser Engineering, 2016, 45(7): 0718003. (in Chinese)
李宏壮, 刘欣悦, 王志臣, 等.多用途、模块化哈特曼波前传感器的研制[J].光学技术, 2011, 37(3): 362-365.
LI H ZH, LIU X Y, WANG ZH CH, et al.. Develop of multi-application and modular Hartmann wavefront sensor[J]. Optical Technique, 2011, 37(3): 362-365. (in Chinese)
0
浏览量
20
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构