浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.吉林大学 机械科学与工程学院, 吉林 长春 130025
胡海飞(1984-), 男, 江西瑞金人, 博士研究生, 助理研究员, 2007年于华中科技大学获得学士学位, 2010年于大连理工大学获得硕士学位, 主要从事原位光学检测支撑系统设计、光机结构集成分析和优化等方面的研究.E-mail:huhf@ciomp.ac.cn HU Hai-fei, E-mail:huhf@ciomp.ac.cn
收稿日期:2017-06-02,
录用日期:2017-6-22,
纸质出版日期:2017-10-25
移动端阅览
胡海飞, 刘振宇, 罗霄, 等. 4 m口径SiC反射镜原位检测用静压支撑系统[J]. 光学 精密工程, 2017,25(10):2607-2613.
Hai-fei HU, Zhen-yu LIU, Xiao LUO, et al. Hydrostatic support system for in-situ optical testing of a 4 m aperture SiC mirror[J]. Optics and precision engineering, 2017, 25(10): 2607-2613.
胡海飞, 刘振宇, 罗霄, 等. 4 m口径SiC反射镜原位检测用静压支撑系统[J]. 光学 精密工程, 2017,25(10):2607-2613. DOI: 10.3788/OPE.20172510.2607.
Hai-fei HU, Zhen-yu LIU, Xiao LUO, et al. Hydrostatic support system for in-situ optical testing of a 4 m aperture SiC mirror[J]. Optics and precision engineering, 2017, 25(10): 2607-2613. DOI: 10.3788/OPE.20172510.2607.
研制了一套用于4 m SiC反射镜原位检测的静压支撑系统,以降低超大口径SiC反射镜离线检测的风险,提高其制造效率。首先,推导了单元刚度的解析式,确定了其中关键因素;然后,对支撑单元进行抽样测试,结合解析式预测了支撑群组中单元的工作刚度。最后,通过密封性测试和反射镜原位检测,验证了支撑系统的稳定性;通过有限元模拟,计算了系统的重力卸载面形精度。结果表明:5个单元连组时,单元刚度约为1.9 kN/mm,刚度值分布在±3%误差区间;独立单元刚度可高至15 kN/mm;3种分组单元刚度预测值分别为1.7,1.1和0.8 kN/mm。支撑系统空载时管路压强变化缓慢,表明密封性良好;用该系统支撑4 m反射镜时,11天内高度绝对变化量小于50
μ
m,相对变化量小于20
μ
m。54个单元刚度随机分布时,镜面面形高阶残差(RMS)为20 nm。提出的系统基本满足原位检测的稳定性和精度要求。
A set of hydrostatic support system for a 4 m SiC mirror in-situ testing was designed to reduce the risk of ultra-large mirror off-line testing and to improve fabrication efficiency. Firstly
the analytical formula for calculating support stiffness was derived
and its main factor was found. Then
some support samples were tested
and the support stiffness of a single support unit in different groups was predicted by combining the sample results and analytical formula. Finally
the stability of the support system was evaluated by pressurization test and in-situ testing
and the mirror surface precision with its gravity offloaded by the support system was calculated by finite element simulation. Results show that the average stiffness is about 1.9 kN/mm with a relative difference among support units about 3% when 5 units are linked together
the stiffness for a single unit isolated is as high as 15 kN/mm
and 3 kinds of unit stiffness in the support system are 1.7
1.1 and 0.8 kN/mm respectively. Moreover
pressurization test shows a slow pressure change
which indicates that the system is well sealed. When the hydrostatic system was used for a 4 m mirror
the height changes rise up and down within 50
μ
m in 11 days
and the relative change is less than 20
μ
m. When the mirror is supported on 54 units with stiffness difference by 3% randomly
the surface RMS is less than 20 nm. The proposed system meets the requirement of in-situ optical testing for precision and stability.
赵文兴, 张舸.特大尺寸轻型碳化硅镜坯烧结工艺研究[J].硅酸盐通报, 2014, 33(11): 2838-2842.
ZHAO W X, ZHANG G. Study on sintering process of ultra-large-scale lightweight SiC mirror blank[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(11): 2838-2842. (in Chinese)
张学军, 李志来, 张忠玉.基于SiC材料的空间相机非球面反射镜结构设计[J].红外与激光工程, 2007, 36(5): 577-582.
ZHANG X J, LI ZH L, ZHANG ZH Y. Space telecope aspherical mirror structure design based on SiC material[J]. Infrared and Laser Engineering, 2007, 36(5): 577-582. (in Chinese)
SEIN E, TOULEMONT Y, SAFA F, et al.. A φ3.5m diameter SiC telescope for Herschel mission[J]. SPIE, 2003, 4850: 606-618.
ZHANG G, ZHAO W X, ZHAO R C, et al.. Fabricating large-scale mirrors using reaction-bonded silicon carbide[EB/OL]. SPIE Newsroom, http://spie.org/newsroom/6582-fabricating-large-scale-mirrors-using-reaction-bonded-silicon-carbide?ArticleID=x119942&highlight=x2422 http://spie.org/newsroom/6582-fabricating-large-scale-mirrors-using-reaction-bonded-silicon-carbide?ArticleID=x119942&highlight=x2422 .(2016-08-09).
LAN B, WU X X, LI J F, et al.. Influence of axial-force errors on the deformation of the 4 m lightweight mirror and its correction[J]. Applied Optics, 2017, 56(3): 611-619.
吴小霞, 李剑锋, 宋淑梅, 等. 4 m SiC轻量化主镜的主动支撑系统[J].光学 精密工程, 2014, 22(9): 2451-2457.
WU X X, LI J F, SONG S M, et al.. Active support system for 4 m SiC lightweight primary mirror[J]. Opt. Precision Eng., 2014, 22(9): 2451-2457. (in Chinese)
李剑锋, 吴小霞, 邵亮.大口径SiC主镜主动支撑研究及促动器设计[J].红外与激光工程, 2016, 45(7): 0718003.
LI J F, WU X X, SHAO L. Study on active support for large SiC primary mirror and force actuator design[J]. Infrared and Laser Engineering, 2016, 45(7): 0718003. (in Chinese)
刘振宇, 李龙响, 曾雪峰, 等.大口径非球面反射镜误差分离组合加工技术[J].光学 精密工程, 2017, 25(4): 813-819.
LIU ZH Y, LI L X, ZENG X F, et al.. Fabrication of large aspheric mirror using multi-mode polishing based on error separation[J]. Opt. Precision Eng., 2017, 25(4): 813-819. (in Chinese)
徐宏, 关英俊.空间相机1 m口径反射镜组件结构设计[J].光学 精密工程, 2013, 21(6): 1488-1495.
XU H, GUAN Y J. Structural design of 1 m diameter space mirror component of space camera[J]. Opt. Precision Eng., 2013, 21(6): 1488-1495. (in Chinese)
胡海飞, 罗霄, 辛宏伟, 等.超大口径光学制造均力支撑布局优化[J].光学学报, 2014, 34(4): 0422003.
HU H F, LUO X, XIN H W, et al.. Layout optimization of equal-force supports for ultra-large optical fabrication[J]. Acta Optica Sinica, 2014, 34(4): 0422003. (in Chinese)
胡海飞, 罗霄, 戚二辉, 等.超大口径光学制造的静压支撑系统集成与控制[J].光学学报, 2015, 35(8): 0822001.
HU H F, LUO X, QI E H, et al.. System integration and control of the hydrostatic supports for manufacturing ultra-large optics[J]. Acta Optica Sinica, 2015, 35(8): 0822001. (in Chinese)
李剑锋.望远镜主镜支撑用液压缸研究与设计[J].长春理工大学学报:自然科学版, 2014, 37(3): 32-37.
LI J F. Research and design of cylinder used as the primary mirror support of telescope[J]. Journal of Changchun University of Science and Technology:Natural Science Edition, 2014, 37(3): 32-37. (in Chinese)
XIONG L, LUO X, LIU Z Y, et al.. Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics[J]. Optical Engineering, 2016, 55(7): 074108.
0
浏览量
24
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构