浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
[ "赵宏超(1985-), 男, 山东泰安人, 博士研究生, 助理研究员, 2009年于吉林大学获得学士学位, 2014年于中科院长春光机所获得博士学位, 主要从事望远镜轴系设计技术的研究.E-mail:zhaohcciomp@163.com" ]
张景旭(1965-),男,吉林长春人,研究员,博士生导师,主要研究方向为大型光电经纬仪的结构设计。E-mail:zhangjx@ciomp.ac.cn ZHANG Jing-xu, E-mail:zhangjx@ciomp.ac.cn
收稿日期:2017-06-01,
录用日期:2017-7-15,
纸质出版日期:2017-10-25
移动端阅览
赵宏超, 张景旭, 杨飞, 等. 1.2m望远镜次镜支撑结构设计[J]. 光学 精密工程, 2017,25(10):2614-2619.
Hong-chao ZHAO, Jing-xu ZHANG, Fei YANG, et al. Secondary mirror supporting structure for 1.2 m telescope[J]. Optics and precision engineering, 2017, 25(10): 2614-2619.
赵宏超, 张景旭, 杨飞, 等. 1.2m望远镜次镜支撑结构设计[J]. 光学 精密工程, 2017,25(10):2614-2619. DOI: 10.3788/OPE.20172510.2614.
Hong-chao ZHAO, Jing-xu ZHANG, Fei YANG, et al. Secondary mirror supporting structure for 1.2 m telescope[J]. Optics and precision engineering, 2017, 25(10): 2614-2619. DOI: 10.3788/OPE.20172510.2614.
研制了一个用于1.2 m望远镜的次镜支撑结构,以满足其对刚度和伺服系统带宽的要求。首先,对影响主镜遮拦和支撑系统刚度的四翼梁进行研究。使用动力学建模方法,初选四翼梁结构的参数。然后在ANSYS中建立有限元模型,进行静力学和模态分析。最后,使用试验模态分析法测试设计的支撑结构。有限元分析显示,设计的结构受重力影响会引入0.004 2λ的切向彗差,第一阶模态频率约为57.2 Hz。试验模态分析显示,系统第一阶谐振频率为54.1 Hz,与理论分析和有限元分析结果一致。实验结果与仿真结果对比后显示:归一化的振型向量中叶片结构振幅较小时,实验模态较难提取,且实验结果略小于有限元分析结果,最大相对误差约为7%。设计的次镜支撑结构遮拦小、刚度好,满足使用要求。
A reasonable supporting structure between primary mirror and secondary mirror for a 1.2 m telescope was fabricated to meet its requirement for stiffness and the bandwidth of servo system. A four-vane spider effecting on the primary obstruction and secondary mirror stiffness was explored. The key parameters for the four-vane spider were selected by dynamic molding. Then
a finite element model was established in the ANSYS to perform static analysis and modal analysis. Finally
the modal analysis method was used to test the designed support structure. The finite element analysis shows that the designed structure effected by gravity induces about 0.004 2λ coma while the telescope points to the horizon
and the first-order modal frequency is about 57.2 Hz. The modal analysis indicates that the first-order resonance frequency is up to 54.1 Hz
which is in agreement with that of finite element analysis. Experimental results and FEA results are compared
and it shows that it is difficult to extract the modal when the vibration magnitude on the vane is smaller and obtained results are little smaller than that of the FEA
in which the maximum relative error is less than 7%. In conclusion
this design is not only a fewer obstruction but also an excellent stiffness
meeting the requirement of telescopes.
SANDERS G H. The thirty meter telescope (TMT): an international observatory[J]. Journal of Astrophysics and Astronomy, 2013, 34(2): 81-86.
WILSON R N. Reflecting Telescope Optics Ⅱ: Manufacture, Testing, Alignment, Modern Techniques[M]. New York: Springer, 2013.
程景全.天文望远镜原理和设计:射电、红外、光学、X射线和γ射线望远镜[M].北京:中国科学技术出版社, 2003.
CHENG J Q. Principles of Astronomical Telescope Design[M]. Beijing: Science and Technology of China Press, 2003. (in Chinese)
WANG S Q, WEI K, ZHENG W J, et al.. First light on an adaptive optics system using a non-modulation pyramid wavefront sensor for a 1.8 m telescope[J]. Chinese Optics Letters, 2016, 14(10): 100101.
韩春杨, 徐振邦, 吴清文, 等.大型光学载荷次镜调整机构优化设计及误差分配[J].光学 精密工程, 2016, 24(5): 1093-1103.
HAN CH Y, XU ZH B, WU Q W, et al.. Optimization design and error distribution for secondary mirror adjusting mechanism of large optical payload[J]. Opt. Precision Eng., 2016, 24(5): 1093-1103. (in Chinese)
赵宏超, 张景旭, 杨飞, 等.预紧式八翼梁次镜支撑结构的动力学分析[J].光学 精密工程, 2013, 21(5): 1199-1204.
ZHAO H CH, ZHANG J X, YANG F, et al.. Preloading eight-vane spider for supporting structure of secondary mirror[J]. Opt. Precision Eng., 2013, 21(5): 1199-1204. (in Chinese)
邵亮, 吴小霞, 陈宝刚, 等. SiC轻量化主镜的被动支撑系统[J].光学 精密工程, 2015, 23(5): 1380-1386.
SHAO L, WU X X, CHEN B G, et al.. Passive support system of light-weighted SiC primary mirror[J]. Opt. Precision Eng., 2015, 23(5): 1380-1386. (in Chinese)
杨飞, 刘国军, 赵宏超, 等. 30 m望远镜三镜系统刚度分配与分析[J].光学 精密工程, 2016, 24(1): 152-159.
YANG F, LIU G J, ZHAO H CH, et al.. Stiffness allocation and analysis of TMT M3S[J]. Opt. Precision Eng., 2016, 24(1): 152-159. (in Chinese)
YANG T Y, WIEBE R. Experimental Study on the Effect of Large Axial Tensile Force on the Natural Frequency of a Fixed-Fixed Steel Beam[M]//KERSCHEN G. Nonlinear Dynamics, Volume 1, Springer, 2017: 127-134.
XIONG H X, ZHANG Y T. Theoretical analysis of natural frequency of externally prestressed concrete beam based on rigidity correction[J]. Academic of Xi'an Jiaotong University, 2009, 21(1): 31-35.
师汉民.机械振动系统:分析·测试·建模·对策(下册)[M]. 2版.武汉:华中科技大学出版社, 2004: 91-124.
SHI H M. Vibration Systems—Analyzing Testing Modeling Controlling[M]. 2nd ed.. Wuhan: Huazhong University of Science and Technology Press, 2004: 91-124. (in Chinese)
HUANG B K, HUANG P H. Finite element and wavefront error analysis of the primary mirror of an experimental telescope with reverse engineering[J].SPIE, 2016, 9953: 99530T.
0
浏览量
520
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构