浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
[ "郭鹏飞(1985-), 男, 吉林长春人, 助理研究员, 2009年、2015年于北京理工大学分别获得学士、博士学位, 主要从事望远镜精密跟踪控制与电子学设计.E-mail:guopf_ciomp@sina.com" ]
[ "邓永停(1987-), 男, 山东潍坊人, 助理研究员, 2010年于中国石油大学(华东)获得学士学位, 主要从事望远镜精密跟踪控制技术的研究及电子学设计.E-mail:dyt0612@163.com" ]
收稿日期:2017-06-01,
录用日期:2017-7-15,
纸质出版日期:2017-10-25
移动端阅览
郭鹏飞, 邓永停, 王帅. 基于摩擦模型的反演滑模控制在大型望远镜上的应用[J]. 光学 精密工程, 2017,25(10):2620-2626.
Peng-fei GUO, Yong-ting DENG, Shuai WANG. Backstepping sliding mode control of large telescope based on friction model[J]. Optics and precision engineering, 2017, 25(10): 2620-2626.
郭鹏飞, 邓永停, 王帅. 基于摩擦模型的反演滑模控制在大型望远镜上的应用[J]. 光学 精密工程, 2017,25(10):2620-2626. DOI: 10.3788/OPE.20172510.2620.
Peng-fei GUO, Yong-ting DENG, Shuai WANG. Backstepping sliding mode control of large telescope based on friction model[J]. Optics and precision engineering, 2017, 25(10): 2620-2626. DOI: 10.3788/OPE.20172510.2620.
根据永磁同步电机驱动的大型望远镜转台对指向精度与低速跟踪精度的要求,设计了基于摩擦模型的反演滑模控制器。建立了基于摩擦模型与外部扰动的系统模型;然后,按照反演设计方法,设计了离控制输入最远的子系统,在设计过程中加入滑模控制,从而减小非线性摩擦因素与外部风载等对指向精度与跟踪精度的影响。通过理论仿真和实验研究验证了该方法的有效性。结果显示:所设计的反演滑模控制器具有较好的动态响应,对扰动等不确定性因素具有较强的鲁棒性,当位置阶跃指令为4.6 "时,稳态误差为0.048 51",比传统的PI控制算法减小21.4%;当输入斜率为5(")/s的位置斜坡指令时,稳态跟踪误差为0.031 26",比传统的PI控制算法减小30.1%。结果表明提出的方法能够提高望远镜控制系统的指向精度和低速跟踪精度。
According to the requirement of a large telescope driven by a permanent magnet synchronous motor(PMSM) for pointing precision and following precision
a sliding mode position controller was designed based on a friction model with backstepping approach. Firstly
the system model was established based on LuGre friction model and external disturbance. Then
a subsystem which is the furthest away from the control input was designed by inversion method. In the design process
the sliding mode control law was induced into each step of backstepping approach to attenuate the influence of nonlinearity friction and external disturbance on the pointing precision and following precision of the large telescope. The effectiveness of the proposed method was verified by theoretical simulation and experimental test. The experimental results demonstrate that the system has a good dynamic performance and is insensitive to the uncertainty factors such as disturbance. The stable pointing error is 0.048 51" when the position command is 4.6"
which decreases 21.4% than that of the traditional PI controller. The stable following error is 0.031 26" when the ramp position command 5 (")/s
which decreases 30.1% than that of the traditional PI controller. The proposed controller improves the pointing precision and following precision of large telescopes successfully.
胡伟, 王莉, 张振超, 等.基于DSP的大口径天文望远镜伺服控制的设计与实现[J].微电机, 2010, 43(8): 38-40.
HU W, WANG L, ZHANG ZH CH, et al.. Design and implementation of servo control system of the large aperture telescope based on DSP[J]. Micromotors, 2010, 43(8): 38-40. (in Chinese)
KANZAWA T, TOMONO D, USUDA T, et al.. Improvement of the pointing accuracy of the Subaru telescope by suppressing vibrations[J]. SPIE, 2006, 6267: 62673J.
LEWIS H. Telescope control systems Ⅲ[J]. SPIE, 1998, 3351: 1-360.
FILGUEIRA J M, BEC M, SOTO J, et al.. GMT software and controls overview[J]. SPIE, 2012, 8451:845111.
JOHNS M. The Giant Magellan telescope (GMT)[J]. SPIE, 2008, 6986: 698603.
张敏. TMT三镜交流伺服系统的低速研究[D]. 长春: 长春光学精密机械与物理研究所, 2016. http://cdmd.cnki.com.cn/Article/CDMD-80139-1016082600.htm
ZHANG M. Research on AC Servo System of Low Speed for the TMT Tertiary Mirror System[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016. (in Chinese)
THOMPSON P M, MACMYNOWSKI D G, SIROTA M J. Analysis of the TMT mount control system[J]. SPIE, 2008, 7012: 70121P.
DE WIT C C, OLSSON H, ASTROM K J, et al.. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control, 1995, 40(3): 419-425.
ZARCHI H A, MARKADEH G R A, SOLTANI J. Direct torque and flux regulation of synchronous reluctance motor drives based on input-output feedback linearization[J]. Energy Conversion and Management, 2010, 51(1): 71-80.
REBOUH S, KADDOURI A, ABDESSEMED R, et al.. Adaptive backstepping speed control for a permanent magnet synchronous motor[C]. Proceedings of 2011 International Conference on Management and Service, IEEE, 2011: 1-4.
KARABACAK M, ESKIKURT H I. Design, modelling and simulation of a new nonlinear and full adaptive backstepping speed tracking controller for uncertain PMSM[J]. Applied Mathematical Modelling, 2012, 36(11): 5199-5213.
KARABACAK M, ESKIKURT H I. Speed and current regulation of a permanent magnet synchronous motor via nonlinear and adaptive backstepping control[J]. Mathematical and Computer Modelling, 2011, 53(9-10): 2015-2030.
YU J P, CHEN B, YU H S, et al.. Adaptive fuzzy backstepping position tracking control for permanent magnet synchronous motor[J]. International Journal of Innovative Computing, Information and Control, 2010, 7(4): 1589-1601.
邓永停, 李洪文, 王建立, 等.基于自适应滑模控制的大型望远镜低速控制[J].中国光学, 2016, 9(6): 713-720.
DENG Y T, LI H W, WANG J L, et al.. Large telescope low speed control based on adaptive sliding mode control[J]. Chinese Optics, 2016, 9(6): 713-720. (in Chinese)
程龙, 陈娟, 陈茂胜, 等.光电跟踪系统快速捕获时间最优滑模控制技术[J].光学 精密工程, 2017, 25(1): 148-154.
CHENG L, CHEN J, CHEN M SH, et al.. Fast acquisition of time optimal sliding model control technology for photoelectric tracking system[J]. Opt. Precision Eng., 2017, 25(1): 148-154. (in Chinese)
邓永停, 李洪文, 王建立, 等.基于卡尔曼滤波器的交流伺服系统自适应滑模控制[J].光学 精密工程, 2014, 22(8): 2088-2095.
DENG Y T, LI H W, WANG J L, et al.. Adaptive sliding mode control for AC servo system based on Kalman filter[J]. Opt. Precision Eng., 2014, 22(8): 2088-2095. (in Chinese)
0
浏览量
786
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构