浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100039
[ "刘京(1991-), 女, 辽宁铁岭人, 博士研究生, 2013年于南京航空航天大学获得学士学位, 主要从事望远镜精密跟踪控制方面的研究.E-mail:nuaaliujing@163.com" ]
[ "邓永停(1987-), 男, 山东潍坊人, 助理研究员, 博士.2010年于中国石油大学(华东)获得学士学位, 2015年于中国科学院长春光学精密机械与物理研究所获得博士学位, 主要从事望远镜精密跟踪控制技术及电子学设计.E-mail:dyt0612@163.com" ]
收稿日期:2016-11-17,
录用日期:2017-1-10,
纸质出版日期:2017-10-25
移动端阅览
刘京, 李洪文, 邓永停. 基于鲁棒迭代学习控制的永磁同步电机转矩脉动抑制[J]. 光学 精密工程, 2017,25(10):2645-2660.
Jing LIU, Hong-wen LI, Yong-ting DENG. Torque ripple minimization of PMSM based on robust iterative learning control[J]. Optics and precision engineering, 2017, 25(10): 2645-2660.
刘京, 李洪文, 邓永停. 基于鲁棒迭代学习控制的永磁同步电机转矩脉动抑制[J]. 光学 精密工程, 2017,25(10):2645-2660. DOI: 10.3788/OPE.20172510.2645.
Jing LIU, Hong-wen LI, Yong-ting DENG. Torque ripple minimization of PMSM based on robust iterative learning control[J]. Optics and precision engineering, 2017, 25(10): 2645-2660. DOI: 10.3788/OPE.20172510.2645.
为了提高永磁同步电机转速伺服系统的性能,抑制转矩脉动对控制系统的影响,提出了滑模控制与迭代学习控制相结合的鲁棒迭代学习控制方法(RILC)。设计了迭代学习控制器抑制周期性转矩脉动,提出了滑模控制器提高系统的抗扰动性能,保证系统强鲁棒性及响应快速性。实验结果显示,电机以900 r/min的速度运行时,采用鲁棒迭代学习控制可将速度脉动6次谐波幅值由0.89降低到0.56;加入0.5 N·m的负载扰动后,转速波动最大值为22 r/min,比PI-迭代学习控制法得到的值减小了1.8%。电机以60 r/min运行时,采用鲁棒迭代学习控制可将速度脉动6次谐波幅值由4.87降低到0.45;加入0.5 N·m的负载扰动的,转速波动最大值为24 r/min,比PI-迭代学习控制法得到的值减小了23%。得到的结果表明,鲁棒迭代学习控制方法可有效抑制转矩脉动,同时可提高永磁同步电机转速伺服系统的鲁棒性和动态响应性能。
A Robust Iterative Learning Control (RILC) method by combining sliding mode control with Iterative Learning Control (ILC) was proposed to suppress the effect of torque ripples on control system and to improve the performance of speed servo system in a Permanent Magnet synchronous Motor(PMSM). An iterative learning controller was designed to reduce the periodic torque ripples and a sliding mode controller was used to guarantee the fast response and strong robustness to further enhance the anti-disturbance ability of the system. Verification experiments were carried out
and the results demonstrate that when the motor is operating at a speed of 900 r/min
the robust ILC reduces the 6th harmonics amplitude from 0.89 to 0.56. When a sudden load 0.5 N·m is added to the system
the robust ILC gives a maximum speed fluctuation of 22 r/min. Compared with PI-ILC
the speed fluctuation is reduced by 1.4%. When the motor is operating at a speed of 60 r/min
the robust ILC reduces the 6th harmonics amplitude from 4.87 to 0.45. When a sudden load 0.5 N·m is added to the system
the robust ILC gives a maximum speed fluctuation of 24 r/min. Compared with that of a PI-ILC
the speed fluctuation is reduced by 23%. The experimental results indicate that the proposed robust ILC method improves the dynamic and robust performance of the speed servo system and suppresses the periodic torque ripples effectively.
李洪文, 邓永停, 王建立.永磁同步电机速度控制器的全数字化集成[J].光学 精密工程, 2015, 23(4): 1105-1113.
LI H W, DENG Y T, WANG J L. Digital integration of PMSM speed controller based on FPGA[J]. Opt. Precision Eng., 2015, 23(4): 1105-1113. (in Chinese)
GVEMES J A, IRAOLAGOITIA A M, DEL HOYO J I, et al.. Torque analysis in permanent-magnet synchronous motors: a comparative study[J]. IEEE Transactions on Energy Conversion, 2011, 26(1): 55-63.
GEBREGERGIS A, CHOWDHURY M H, ISLAM M S, et al.. Modeling of permanent-magnet synchronous machine including torque ripple effects[J]. IEEE Transactions on Industry Applications, 2015, 51(1): 232-239.
KIM J H, CHO K Y, KIM H W, et al.. Torque ripple reduction of PM synchronous motor for wide speed operating ranges[C]. Proceedings of the 9th International Conference on Power Electronics and ECCE Asia, IEEE, 2015: 351-356.
NAKAO N, AKATSU K. Suppressing pulsating torques: torque ripple control for synchronous motors[J]. IEEE Industry Applications Magazine, 2014, 20(6): 33-44.
HUNG J Y, DING Z. Design of currents to reduce torque ripple in brushless permanent magnet motors[J]. IEE Proceedings B-Electric Power Applications, 1993, 140(4): 260-266.
HANSELMAN D C. Minimum torque ripple, maximum efficiency excitation of brushless permanent magnet motors[J]. IEEE Transactions on Industrial Electronics, 1994, 41(3): 292-300.
LIU T. Parameter, speed, position estimations and torque ripple minimization in permanent magnet synchronous motor[D]. USA: University of Akron, 1999. http://www.academia.edu/1422217/On_Modeling_and_Diagnosis_of_Friction_and_Wear_in_Industrial_Robots
PETROVIC V, ORTEGA R, STANKOVIC A M, et al.. Design and Implementation of an adaptive controller for torque ripple minimization in PM synchronous motors[J]. IEEE Transactions on Power Electronics, 2000, 15(5): 871-880.
QIAN W Z, PANDA S K, XU J X. Torque ripple minimization in PM synchronous motors using iterative learning control[J]. IEEE Transactions on Power Electronics, 2004, 19(2): 272-279.
MATTAVELLI P, TUBIANA L, ZIGLIOTTO M. Torque-ripple reduction in PM synchronous motor drives using repetitive current control[J]. IEEE Transactions on Power Electronics, 2005, 20 (6): 1423-1431.
YEO K C, HEINS G, DE BOER F. Indirect adaptive feedforward control in compensating cogging torque and current measurement inaccuracies for permanent magnet motors[C]. Proceedings of 2009 IEEE International Conference on Control and Automation, IEEE, 2009: 2136-2142.
YUAN Y, AUGER F, LORON L, et al.. Torque ripple reduction in permanent magnet synchronous machines using angle-based iterative learning control[C]. Proceedings of the 38th Annual Conference on IEEE Industrial Electronics Society, IEEE, 2012: 2518-2523.
ZHU H, XIAO X, LI Y D. Torque ripple reduction of the torque predictive control scheme for permanent-magnet synchronous motors[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 871-877.
JEZERNIK K, KORELIC J, HORVAT R. PMSM sliding mode FPGA-based control for torque ripple reduction[J]. IEEE Transactions on Power Electronics, 2013, 28(7): 3549-3556.
XU Y H, PARSPOUR N, VOLLMER U. Torque ripple minimization using online estimation of the stator resistances with consideration of magnetic saturation[J]. IEEE Transactions on Industrial Electronics, 2014, 61(9): 5105-5114.
CHAI S, WANG L P, ROGERS E. A cascade MPC control structure for a PMSM with speed ripple minimization[J]. IEEE Transactions on Industrial Electronics, 2013, 60(8): 2978-2987.
FLIELLER D, NGUYEN N K, WIRA P, et al.. A self-learning solution for torque ripple reduction for nonsinusoidal permanent-magnet motor drives based on artificial neural networks[J]. IEEE Transactions on Industrial Electronics, 2014, 61(2): 655-666.
CHO Y, LEE K B, SONG J H, et al.. Torque-ripple minimization and fast dynamic scheme for torque predictive control of permanent-magnet synchronous motors[J]. IEEE Transactions on Power Electronics, 2015, 30(4): 2182-2190.
MOHAMED Y A R I. A newly designed instantaneous-torque control of direct-drive PMSM servo actuator with improved torque estimation and control characteristics[J]. IEEE Transactions on Industrial Electronics, 2007, 54(5): 2864-2873.
SEKI Y, OHISHI K, YOKOKURA Y, et al.. Quick torque ripple suppression controlled fast position servo based on hybrid system of disturbance observer and torque ripple table[C]. Proceedings of the 41st Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2015: 817-822.
REN Y, ZHU Z Q. Reduction of both harmonic current and torque ripple for dual three-phase permanent-magnet synchronous machine using modified switching-table-based direct torque control[J]. IEEE Transactions on Industrial Electronics, 2015, 62(11): 6671-6683.
LAM B H, PANDA S K, XU J X. Reduction of periodic speed ripples in PM synchronous motors using iterative learning control[C]. Proceedings of the 26th Annual Confjerence of the IEEE Industrial Electronics Society, IEEE, 2000: 1406-1411.
QIAN W Z, PANDA S K, XU J X. Speed ripple minimization in PM synchronous motor using iterative learning control[J]. IEEE Transactions on Energy Conversion, 2005, 20(1): 53-61.
LI WS, ZHANG J, LI Y. A simpler and more efficient iterative learning controller for PMSM torque ripple reduction[C]. Proceedings of 2013 International Conference on Electrical Machines and Systems, IEEE, 2013: 1231-1235.
YAN Y, LI W S, DENG W T, et al.. Torque ripple minimization of PMSM using PI type iterative learning control[C]. Proceedings of the 40th Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2014: 925-931.
SHANG H, ZHAO L H, WANG T. Torque ripple reduction for permanent magnet synchronous motor based on learning control[C]. Proceedings of the 2nd International Conference on Information Science and Control Engineering, IEEE, 2015: 1001-1005.
ZHANG X G, SUN L Z, ZHAO K, et al.. Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques[J]. IEEE Transactions on Power Electronics, 2013, 28(3): 1358-1365.
ZHU L, JIANG S Z, ZHU Z Q, et al.. Analytical methods for minimizing cogging torque in permanent-magnet machines[J]. IEEE Transactions on Magnetics, 2009, 45(4): 2023-2031.
0
浏览量
565
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构