浏览全部资源
扫码关注微信
西南交通大学 机械工程学院, 四川 成都 610031
[ "秦娜(1981-), 女, 四川眉山人, 博士, 讲师, 硕士生导师, 2003年于吉林大学获得学士学位, 2005年于大连理工大学获得硕士学位, 2011年于美国堪萨斯州立大学获得博士学位, 主要从事难加工材料的非传统加工及多轴数控机床及其加工技术的研究.E-mail:tinaspirit@home.swjtu.edu.cn" ]
[ "郑亮(1993-), 男, 湖北武汉人, 硕士研究生, 2015年于长江大学获得学士学位, 主要从事旋转超声加工方面的研究, E-mail:598167647@qq.com" ]
收稿日期:2017-04-28,
录用日期:2017-5-22,
纸质出版日期:2017-10-25
移动端阅览
秦娜, 郑亮, 刘亚龙, 等. RB-SiC亚表面损伤检测及其旋转超声磨削亚表面损伤特征[J]. 光学 精密工程, 2017,25(10):2714-2724.
Na QIN, Liang ZHENG, Ya-long LIU, et al. Subsurface damage detection of RB-SiC and its subsurface damage characteristics in rotating ultrasonic grinding[J]. Optics and precision engineering, 2017, 25(10): 2714-2724.
秦娜, 郑亮, 刘亚龙, 等. RB-SiC亚表面损伤检测及其旋转超声磨削亚表面损伤特征[J]. 光学 精密工程, 2017,25(10):2714-2724. DOI: 10.3788/OPE.20172510.2714.
Na QIN, Liang ZHENG, Ya-long LIU, et al. Subsurface damage detection of RB-SiC and its subsurface damage characteristics in rotating ultrasonic grinding[J]. Optics and precision engineering, 2017, 25(10): 2714-2724. DOI: 10.3788/OPE.20172510.2714.
分别采用截面抛光法(包括以硅片作陪衬与以聚酯作陪衬两种形式)和界面黏接法检测了反应烧结碳化硅(Reaction Bonded SiC,RB-SiC)旋转超声磨削加工的亚表面损伤。为确定其中的最佳检测形式,采用表面破碎层深度、最大破碎层深度、平均裂纹深度、最大裂纹深度4个亚表面损伤评价指标对两种方法分别检测到的RB-SiC旋转超声磨削亚表面损伤进行对比分析。结果显示:截面抛光法(硅片作陪衬)检测到的4个指标值依次为3.30 μm、6.59 μm、8.64 μm、17.44 μm;截面抛光法(聚酯作陪衬)检测到的4个指标值依次为5.71 μm、14.33 μm、15.36 μm、54.82 μm;而界面黏接法检测到的4个指标值依次为9.19 μm、19.45 μm、13.04 μm、32.20 μm。试验结果表明,截面抛光法(硅片作陪衬)检测的精度更高,检测的亚表面损伤更符合实际情况。最后,基于此方法,对旋转超声磨削RB-SiC材料的亚表面损伤特征进行了总结。
A cross-sectional polishing method(taking a silicon as foil or taking a polyester as foil) and a bonded interface sectioning method were used to test the subsurface damage of RB-SiC (reaction bonded SiC)in rotary ultrasonic grinding(RUG) respectively. To determine the optimal test form
four kinds of subsurface damage evaluation indexes
namely average chipping layer depth
maximum chipping layer depth
average crack depth and maximum crack depth were used to analyze and compare the subsurface damages of RB-SiC in the RUG tested by the two methods mentioned above. The results show that the evaluation indexes from cross-sectional polishing method (the silicon as foil) are 3.30 μm
6.59 μm
8.64 μm
and 17.44 μm
those from the cross-sectional polishing method (the polyester as foil) are 5.71 μm
14.33 μm
15.36 μm
and 54.82 μm
and those from the bonded interface sectioning method are 9.19 μm
19.45 μm
13.04 μm
and 32.20 μm. It demonstrates that the cross-sectional polishing method (the silicon as foil) has the higher test accuracy
and the detection result is more in line with the actual situation. Finally
the paper summarizes subsurface damage characteristics of RB-SiC in the RUG.
饶小双, 张飞虎, 刘立飞, 等.电火花机械复合磨削反应烧结SiC陶瓷的表面特征[J].光学 精密工程, 2016, 24(9): 2192-2199.
RAO X SH, ZHANG F H, LIU L F, et al.. Surface characteristics for RB-SiC ceramics by electrical discharge diamond grinding[J]. Opt. Precision Eng., 2016, 24(9): 2192-2199. (in Chinese)
王卓. 光学材料加工亚表面损伤检测及控制关键技术研究[D]. 长沙: 国防科学技术大学, 2008.
WANG ZH. Study on the detection and control techniques of subsurface damage in optical fabrication [D]. Changsha: National University of Defense Technology, 2008. (in Chinese)
刘健, 马占龙, 王君林.光学元件亚表面损伤检测技术研究现状[J].激光与光电子学进展, 2011, 48(8): 081204.
LIU J, MA ZH L, WANG J L. Research status of subsurface damage detection technology of optical elements[J]. Laser & Optoelectronics Progress, 2011, 48(8): 081204. (in Chinese)
王健, 郑非非, 董志刚, 等.碳化硅磨削亚表面损伤检测方法[J].金刚石与磨料磨具工程, 2015, 35(4): 60-65.
WANG J, ZHENG F F, DONG ZH G, et al.. Detection method of subsurface damage of silicon carbide after grinding[J]. Diamond & Abrasives Engineering, 2015, 35(4): 60-65. (in Chinese)
ZHANG B, ZHENG X L, TOKURA H, et al.. Grinding induced damage in ceramics[J]. Journal of Materials Processing Technology, 2003, 132(1-3): 353-364.
刘民慧. 碳化硅陶瓷精密磨削亚表面损伤及预测研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
LIU M H. Research on precision grinding subsurface damage and prediction of silicon carbide ceramic [D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese)
梁晓辉. 碳化硅磨削去除机理及亚表面裂纹研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
LIANG X H. Research on grinding removal mechanism and subsurface crack of silicon carbide [D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese)
曾艳芬. RB-SiC材料的磨削加工表面层质量研究[D]. 大连: 大连理工大学, 2014.
ZENG Y F. Study on the surface layer quality of RB-SiC after grinding [D]. Dalian: Dalian University of Technology, 2014. (in Chinese)
姚旺. 反应烧结碳化硅材料磨削去除机理和加工参数优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
YAO W. Investigation on material removal mechanisms and grinding parameters optimization of reaction bonded silicon carbide [D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese)
AGARWAL S, RAO P V. Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding[J]. International Journal of Machine Tools and Manufacture, 2008, 48(6): 698-710.
杨鑫宏, 韩杰才.脆性光学材料的超声磨削实验研究[J].光学技术, 2007, 33(1): 65-67.
YANG X H, HAN J C. Experimental study on ultrasonic vibration grinding of brittle optical materials[J]. Optical Technique, 2007, 33(1): 65-67. (in Chinese)
ZHANG C L, FENG P F, ZHANG J F, et al.. Theoretical and experimental research on the features of cutting force in rotary ultrasonic face milling of K9 glass[J]. Applied Mechanics and Materials, 2012, 157-158: 1674-1679.
CHURI N J, PEI Z J, SHORTER D C. Rotary ultrasonic machining of dental ceramics[J]. International Journal of Machining and Machinability of Materials, 2009, 6(3-4): 270-284.
ZHANG C L, FENG P F, PEI Z J, et al.. Rotary ultrasonic machining of sapphire: feasibility study and designed experiments[J]. Key Engineering Materials, 2014, 589-590: 523-528.
CONG W L, PEI Z J, DEINES T W, et al.. Rotary ultrasonic machining of CFRP composites: a study on power consumption[J]. Ultrasonics, 2012, 52(8): 1030-1037.
乔国朝. 氮化硅陶瓷超声振动铣磨加工表面完整性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
QIAO G C. Research on machined surface integrity in ultrasonic vibration mill-grinding of silicon nitride ceramics [D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese)
王健. RBSiC超声辅助磨削工艺研究[D]. 大连: 大连理工大学, 2015.
WANG J. Study on the ultrasonic assisted grinding process of RBSiC [D]. Dalian: Dalian University of Technology, 2015. (in Chinese)
HELBAWI H, ZHANG L C, ZARUDI I, et al.. Difference in subsurface damage in indented specimens with and without bonding layer[J]. International Journal of Mechanical Sciences, 2001, 43(4): 1107-1121.
魏士亮. Si 3 N 4 陶瓷超声旋转磨削加工过程技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
WEI S L. Research on the process of rotary ultrasonic grinding machining for Si 3 N 4 ceramics [D]. Harbin: Harbin Engineering University, 2012. (in Chinese)
0
浏览量
656
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构