浏览全部资源
扫码关注微信
1.天津大学 精密测试技术及仪器国家重点实验室, 天津 300072
2.中国科学院 上海应用物理研究所, 上海 201800
[ "孟伟(1992-), 男, 内蒙古乌兰察布人, 硕士, 2015年于天津大学取得学士学位, 主要从事激光及光电测试、大尺寸测量等技术研究.E-mail:kevin_mengwei@tju.edu.cn" ]
[ "杨凌辉(1981-), 男, 天津人, 博士, 讲师, 2010年于天津大学获得博士学位, 主要从事激光及光电测试、大尺寸测量等技术研究. E-mail:icelinker@tju.edu.cn" ]
收稿日期:2017-05-09,
录用日期:2017-6-22,
纸质出版日期:2017-10-25
移动端阅览
林嘉睿, 孟伟, 杨凌辉, 等. 激光跟踪仪的双面互瞄定向[J]. 光学 精密工程, 2017,25(10):2752-2758.
Jia-rui LIN, Wei MENG, Ling-hui YANG, et al. Two-face reciprocal orientation for laser tracker[J]. Optics and precision engineering, 2017, 25(10): 2752-2758.
林嘉睿, 孟伟, 杨凌辉, 等. 激光跟踪仪的双面互瞄定向[J]. 光学 精密工程, 2017,25(10):2752-2758. DOI: 10.3788/OPE.20172510.2752.
Jia-rui LIN, Wei MENG, Ling-hui YANG, et al. Two-face reciprocal orientation for laser tracker[J]. Optics and precision engineering, 2017, 25(10): 2752-2758. DOI: 10.3788/OPE.20172510.2752.
使用传统公共点定向方法很难在狭小、受限空间下完成对大尺寸测量仪器的定向,故本文提出了一种受限空间下球坐标测量系统的双面互瞄定向方法,并以激光跟踪仪为例进行了理论分析和实验验证。该方法结合激光跟踪仪的测量原理和使用特点,通过激光跟踪仪本体测头的运动特性构建几何约束,仅要求测量仪器之间相互可视,便可依靠较小公共视场完成仪器定向。阐述了该方法的数学建模过程,研究了定向优化算法,并在上海光源环形测量控制网建立过程中进行了相关实验验证。结果表明:该方法在仪器相距5 m以内时,参考点转站误差优于0.12 mm,定向旋转角误差不超过1.5"。与频繁转站的传统方法相比,可在保证精度的同时,极大地提高现场测量效率。该方法亦可推广应用于其它单站坐标测量系统。
As traditional orientation method depends heavily on measurement spaces and it is great difficult to implement the orientation of large dimension instruments in a limited space. Therefore
a two-face reciprocal orientation method was proposed to implement the orientation of a spherical coordinate measurement system in the limited space
and the theory analysis and experiment verification were performed by taking two laser trackers for example. With combination of measuring principle and working characteristics of laser trackers
the geometrical constraints of the method were constructed by motion characteristics of the probes in trackers. So
if the instruments to be measured were visible each other
they will be orientated by the smaller public view field. The mathematical modeling and optimization of this method were elaborated. Then
the experimental verification was performed on an establishment processing of circular measuring control network in Shanghai Synchrotron Radiation Facility(SSRF). The results indicate that the precision of the proposed method is within 0.12 mm and the orientation rotation angle error is less than 1.5"when the two laser trackers are 5m away from each other. As compared to that of traditional orientation method
the measuring efficiency of the method has been obviously promoted with almost the same precision level in a limited space. The method can also be applied to other single station coordinate measuring systems.
KAGERMANN H, HELBIG J, HELLINGER A, et al .. Recommendations for implementing the strategic initiative INDUSTRIE 4.0: securing the future of German manufacturing industry[R]. Final Report of the Industrie 4.0 Working Group. Federal Ministry of Education and Research, 2013.
SCHMITT R H, PETEREK M, MORSE E, et al.. Advances in large-scale metrology-review and future trends[J]. CIRP Annals-Manufacturing Technology, 2016, 65(2): 643-665.
ZHANG D F, ROLT S, MAROPOULOS P G. Modelling and optimization of novel laser multilateration schemes for high-precision applications[J]. Measurement Science and Technology, 2005, 16(12): 2541-2547.
MURALIKRISHNAN B, PHILLIPS S, SAWYER D. Laser trackers for large-scale dimensional metrology: a review[J]. Precision Engineering, 2016, 44: 13-28.
林嘉睿, 邾继贵, 张皓琳, 等.激光跟踪仪测角误差的现场评价[J].仪器仪表学报, 2012, 33(2): 463-468.
LIN J R, ZHU J G, ZHANG H L, et al.. Field evaluation of laser tracker angle measurement error[J]. Chinese Journal of Scientific Instrument, 2012, 33(2): 463-468. (in Chinese)
董登峰, 周维虎, 纪荣祎, 等.激光跟踪仪精密跟踪系统的设计[J].光学 精密工程, 2016, 24(2): 309-318.
DONG D F, ZHOU W H, JI R Y, et al.. Design of precise tracking system of laser tracker[J]. Opt. Precision Eng., 2016, 24(2): 309-318. (in Chinese)
刘娇月, 杨聚庆, 董登峰, 等.激光跟踪仪的光电瞄准与定位系统[J].光学 精密工程, 2015, 23(6): 1558-1564.
LIU J Y, YANG J Q, DONG D F, et al.. Optoelectronic aiming and orientation system of laser tracker[J]. Opt. Precision Eng., 2015, 23(6): 1558-1564. (in Chinese)
WEI F Q, DREYER K, UMBRICHT H. Status of the SLS alignment system[C]. Proceedings of the 7 th International Workshop on Accelerator Alignment , IWAA , 2002.
于成浩, 董岚, 柯明, 等.大尺寸激光跟踪仪三维控制网平面精度研究[J].测绘科学, 2008, 33(2): 42-44.
YU CH H, DONG L, KE M, et al.. The plane accuracy research of 3D control network based on laser tracker in large-scale space[J]. Science of Surveying and Mapping, 2008, 33(2): 42-44. (in Chinese)
HAN L C, ZHANG J X, YANG F, et al.. Estimation of the GSSM calibration error[J]. Applied Optics, 2016, 55(31): 8884-8892.
MUELANER J E, CAI B, MAROPOULOS P G. Large-volume metrology instrument selection and measurability analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2010, 224(6): 853-868.
HUGHES B, FORBES A, LEWIS A, et al.. Laser tracker error determination using a network measurement[J]. Measurement Science and Technology, 2011, 22(4): 045103.
于成浩, 柯明, 杜涵文, 等.上海光源的一级平面控制网[J].原子能科学技术, 2009, 43(10): 931-934.
YU CH H, KE M, DU H W, et al.. Global horizontal control network of Shanghai synchrotron radiation facility[J]. Atomic Energy Science and Technology, 2009, 43(10): 931-934. (in Chinese)
REN Y, LIN J R, ZHU J G, et al.. Coordinate transformation uncertainty analysis in large-scale metrology[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(9): 2380-2388.
ALLAN A L. The principles of theodolite intersection systems[J]. Survey Review, 1988, 29(227): 226-234.
LOURAKIS M I A. A brief description of the Levenberg-Marquardt algorithm implemented by levmar[J]. Foundation of Research and Technology, 2005, 4(1): 1-6.
0
浏览量
531
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构