1.电子科技大学 机械与电气工程学院,四川 成都 611731
2.中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
扫 描 看 全 文
Lei AN, Wei WANG, De-feng LIAO. Static characteristics of air-floating turntable of ultra-precision full-aperture polisher. [J]. Optics and Precision Engineering 29(7):1640-1652(2021)
Lei AN, Wei WANG, De-feng LIAO. Static characteristics of air-floating turntable of ultra-precision full-aperture polisher. [J]. Optics and Precision Engineering 29(7):1640-1652(2021) DOI: 10.37188/OPE.2020.0564.
为了分析角摆和转速对超精密全口径抛光机气浮转台静态特性的影响, 建立了一种数值计算方法。将考虑角摆后的气膜厚度方程带入雷诺方程,此时的方程含有角摆和转速项,采用有限差分法进行离散并通过联合流量平衡方程进行数值求解。计算结果表明:单一角摆下,气浮转台的最大极限角摆为,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=18526768&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=18526763&type=,16.84866714,2.62466669,,随着角摆的增大,气膜厚度最大值逐渐增大而最小值逐渐减小,压力分布发生改变,承载力逐渐降低。组合角摆下,气浮转台的最大极限角摆为,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=18526779&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=18526774&type=,19.30400085,2.62466669,,组合角摆对气浮转台静态特性的影响规律和单一角摆时基本一致,但效果更为显著。气浮转台的失效转速为2 300 r·min,-,1,,随着转速的增大,气膜厚度不会直接发生改变,压力分布却明显变化,最终承载力逐渐降低,进而导致气膜厚度发生变化。角摆和转速的改变致使气浮转台的承载力发生变化,为了保持力的平衡,转台位置会随之改变。该研究为后续动态回转误差的研究提供了理论基础。
A numerical method is established to analyze the influence of the pendulum angle and rotation speed on the static characteristics of the air-floating turntable of an ultraprecision full-aperture polisher. Substituting the air-film-thickness equation, which contains the pendulum angle, into the Reynolds equation results in an equation that includes the pendulum angle and speed terms. This equation is then solved by numerically combining the finite difference method with the flow balance equation. The calculation results show that in the case of a single pendulum, the maximum limit of the pendulum angle of the air-floating turntable is 5×10,-,5, rad, and with an increase in the pendulum angle, the maximum value of the air film thickness gradually increases and its minimum value gradually decreases. Furthermore, the pressure distribution changes and the load capacity gradually decreases. In the case of combined pendulums, the maximum limit of the pendulum angle of the air-floating turntable is 4.9×10,-,5, rad. The effect of the combined pendulums on the static characteristics of the air-floating turntable is similar to that in the single-pendulum condition, but more significant. The failure speed of the air-floating turntable is 2 300 r/min. As the speed increases, the thickness of the air film does not change directly. However, the thickness of the air film changes when the load capacity decreases owing to pressure distribution. It can be concluded that a change in the pendulum angle and rotation speed changes the load capacity of the air-floating turntable. Therefore, the position of the turntable will change accordingly to maintain the balance of force. This research provides a theoretical basis for the subsequent study of dynamic rotation errors.
超精密气浮转台角摆转速有限差分法静态特性
ultra-precision air-floating turntableangle pendulumrotation speedfinite different methodstatic characteristics
喻里程. 超精密气浮转台的设计和静动态特性分析[D].广州:广东工业大学,2017.
YU L CH. Design and analysis of static and dynamic performance of an ultra-precision air bearing turntable[D].Guangzhou: Guangdong University of Technology,2017. (in Chinese)
梁迎春,陈国达,孙雅洲,等.超精密机床研究现状与展望[J].哈尔滨工业大学学报,2014,46(05):28-39.
LIANG Y CH, CHEN G D, SUN Y ZH, et al. Research status and outlook of ultra-precision machine tool [J]. Journal of Harbin Institute of Technology, 2014, 46(05):28-39. (in Chinese)
刘延芳,刘兴富,齐乃明,等.主动补偿式超低干扰力矩气浮转台的设计[J].光学 精密工程,2016,24(10):2432-2441.
LIU Y F, LIU X F, QI N M, et al. Design of supper low disturbance torque air bearing table with active compensation[J]. Opt. Precision Eng., 2016, 24(10):2432-2441. (in Chinese)
徐策,李大伟,贺帅,等.自由飞行机器人气浮式模拟器设计[J].光学 精密工程,2019,27(2):352-362.
XU C, LI D W, HE, SH, et al. Design of air-bearing simulator for free-flying robot[J]. Opt. Precision Eng., 2019, 27(2):352-362. (in Chinese)
GAO Q, CHEN W Q, LU L H, et al. Aerostatic bearings design and analysis with the application to precision engineering: State-of-the-art and future perspectives [J]. Tribology International, 2019, 135: 1-17.
贾颖,李东明,赵玉龙,等.压电驱动的超声悬浮精密轴承静动态承载特性[J].光学 精密工程,2019,27(5):1103-1109.
JIA Y, LI D M, ZHAO Y L, et al. Static and dynamic load capacity of piezoelectric actuated ultrasonic levitation precision bearing[J]. Opt. Precision Eng., 2019, 27(5):1103-1109. (in Chinese)
马伟,孔祥龙,徐毅,等.气体静压轴承相位致振气锤失稳机理与试验[J].光学 精密工程,2020,28(5):1101-1108.
MA W, KONG X L, XU Y, et al. Mechanism and test of air hammer instability of aerostatic bearing based on phase-induced vibration[J]. Opt. Precision Eng., 2020, 28(5):1101-1108. (in Chinese)
崔海龙,岳晓斌,张连新,等.基于数值模拟的小孔节流空气静压轴承静动态特性研究[J].机械工程学报,2016, 52(9):116-121.
CUI H L, YUE X B, ZHANG L X, et al. Static and Dynamic Characteristics of Aerostatic Bearing Based on Numerical Simulation [J]. Journal of Mechanical Engineering, 2016, 52(09):116-121. (in Chinese)
李一飞,尹益辉.小孔节流静压支承轴承力学性能的数值建模[J].光学 精密工程,2017,25(2):417-424.
LI Y F, YIN Y H. Numerical modeling of mechanical performances of aerostatic bearing with orifice-type restrictor [J]. Opt. Precision Eng., 2017, 25(2): 417-424. (in Chinese)
赵晓龙,张君安,董皓,等.变截面节流器对空气静压轴承承载性能的影响[J].光学 精密工程,2018,26(10):2446-2454.
ZHAO X L, ZHANG J A, DONG H. Influence of variable section throttle on performance of aerostatic bearings [J]. Opt. Precision Eng., 2018, 26(10):2446-2454. (in Chinese)
BELFORTE G, COLOMBO F, RAPARELLI T, et al. Comparison between grooved and plane aerostatic thrust bearings: static performance [J]. Meccanica, 2011, 46(03):547-555.
LO C Y, WANG C C, LEE Y H. Performance analysis of high-speed spindle aerostatic bearings [J]. Tribology International, 2005, 38(1):5–14.
LIU Z S, ZHANG G H, XU H J. Performance analysis of rotating externally pressurized air bearings[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2009, 223(4):653–663.
JENG Y S, CHANG S H. Comparison between the effects of single-pad and double-pad aerostatic bearings with pocketed orifices on bearing stiffness[J]. Tribology International, 2013, 66(7):12–18.
CHEN C H, KANG Y, YANG D W, et al. Influence of the number of feeding holes on the performances of aerostatic bearings[J]. Industrial Lubrication and Tribology, 2010, 62(3):150-160.
GAO S, CHENG K, CHEN S, et al. CFD based investigation on influence of orifice chamber shapes for the design of aerostatic thrust bearings at ultra-high speed spindles[J]. Tribology International, 2015, 92:211-221.
CHEN Y S, CHIU C C, CHENG Y D. Influences of operational conditions and geometric parameters on the stiffness of aerostatic journal bearings[J]. Precision Engineering, 2010, 34(4):722-734.
ABDURRAHIM D, TUNCAY K. Effects of angular misalignment on the performance of rotor-bearing systems supported by externally pressurized air bearing[J]. Tribology International, 2017, 111:276-288.
SHI J H, CAO H R, CHEN X F. Effect of angular misalignment on the static characteristics of rotating externally pressurized air journal bearing[J]. Science China-technological Sciences, 2019, 62(9):1520-1533.
熊万里,符马力,王少力,等.液体静压转台倾斜油膜承载特性解析[J].中国机械工程,2014,25(24):3326-3333.
XIONG W L, FU M L, WANG SH L, et al. Analyses on tilted oil Film dynamical characteristics of hydrostatic rotary table[J]. China Mechanical Engineering, 2014, 25(24):3326-3333. (in Chinese)
刘志峰,湛承鹏,赵永胜,等.倾斜状态下静压油垫承载性能研究[J].工程力学,2015,32(5):208-212+220.
LIU ZH F, ZHEN CH P, ZHAO Y SH, et al. Research on the bearing performance of hydrostatic oil pad under tilting condition[J]. Engineering Mechanics, 2015, 32(5):208-212+220. (in Chinese)
龚维纬. 气体静压轴承气锤振动仿真与实验研究[D]. 成都:电子科技大学,2020.
GONG W W. Simulation and experimental research on the pneumatic hammer of aerostatic bearings[D].Chengdu: University of Electronic Science and Technology of China,2020.(in Chinese)
0
Views
142
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution