1.山东大学 机械工程学院 先进射流工程技术研究中心,山东 济南 250061
2.高效洁净机械制造教育部重点实验室,山东 济南 250061
扫 描 看 全 文
Zhen YE, Peng YAO, Shi-meng YU, et al. Precision grinding of cylindrical microlens array. [J]. Optics and Precision Engineering 29(7):1567-1579(2021)
Zhen YE, Peng YAO, Shi-meng YU, et al. Precision grinding of cylindrical microlens array. [J]. Optics and Precision Engineering 29(7):1567-1579(2021) DOI: 10.37188/OPE.2020.0612.
柱面微透镜阵列的加工精度要求高,加工效率低,采用具有微细轮廓结构的成形砂轮进行磨削加工能够极大地提高加工效率。为了预测成形砂轮磨削工件的面形误差和表面粗糙度,建立了成形砂轮磨削仿真模型。通过滤波方法分析和模拟微细结构成形砂轮的磨粒突出高度的偏态分布特征,结合实测的砂轮的轮廓形状和跳动完成了整体的空间砂轮的重构,同时建立了砂轮表面磨粒的磨削运动学模型,模拟出工件磨削加工后的表面形貌。最后,开展磨削实验验证了仿真模型的有效性。对比仿真与实验结果可知,面形误差PV值的偏差为5.78%,,R,a,值的偏差为17.3%,,R,z,值的偏差为12.9%。该磨削仿真模型能有效预测磨削表面的面形误差和表面粗糙度。
The machining precision of a cylindrical microlens array is usually very high, whereas the processing efficiency is very low. However, the processing efficiency can be considerably improved using a profile grinding wheel with a fine profile structure. To predict the surface shape error and surface roughness of a workpiece machined using a profile grinding wheel, a grinding simulation model was built for the profile grinding wheel. Then, the skewness distribution characteristics of the protrusion height of grains in the profile grinding wheel surface with a fine structure were analyzed and simulated using the filtering method. Subsequently, combining the outline of the grinding wheel topography and the run-out error of the grinding wheel, the entire grinding wheel in the space was reconstructed. Thereafter, a kinematics model of abrasive grains in the grinding wheel surface was created to simulate the surface topography of the grinding workpiece. Finally, a grinding experiment was conducted to verify the effectiveness of the simulation model. Relative to the experimental results, the errors in the PV, Ra, and Rz values of the simulated surface were 5.78%, 17.3%, and 12.9%, respectively. The proposed grinding simulation model can effectively predict surface shape errors and the roughness of grinding surfaces.
精密磨削柱面微透镜阵列磨削表面仿真砂轮建模成形砂轮
precision grindingcylindrical microlens arraygrinding surface simulationgrinding wheel modelingprofile grinding wheel
林星辰, 朱洪波, 王彪, 等. 均匀光强分布的5 kW半导体激光硬化光源研制[J]. 光学 精密工程, 2017,25(5): 1178-1184.
LIN X CH, ZHU H B, WANG B, et al. Development of 5 kW diode laser hardening source with homogenized intensity distribution[J]. Opt. Precision Eng., 2017,25(5): 1178-1184.(in Chinese)
周叶, 祝启欣, 黄中亚, 等. 基于柱面微透镜阵列的激光匀化系统设计及实验研究[J]. 激光与红外, 2020,50(4): 486-492.
ZHOU Y, ZHU Q X, HUANG ZH Y, et al. Design and experimental investigations of laser homogenization system based on cylindrical microlens array[J]. Laser & Infrared, 2020,50(4): 486-492.(in Chinese)
张凯华, 董连和, 孙艳军, 等. 柱面微透镜阵列用于提高OLED图像质量的研究[J]. 长春理工大学学报:自然科学版, 2012,35(2): 74-78.
ZHANG K H, DONG L H, SUN Y J, et al. The research on using cylindrical microlens arrays to improve the image quality of OLED[J]. Journal of Changchun University of Science and Technology: Natural Science Edition, 2012,35(2): 74-78.(in Chinese)
KALISZER H. Grinding technology. Theory and applications of machining with abrasives: S. Malkin, Ellis Horwood Ltd[J]. International Journal of Machine Tools and Manufacture, 1991, 31(3): 435-436.
NGUYEN T A, BUTLER D L. Simulation of precision grinding process, part 1: generation of the grinding wheel surface[J]. International Journal of Machine Tools and Manufacture, 2005, 45(11): 1321-1328.
HOU Z B, KOMANDURI R. On the mechanics of the grinding process - Part I. Stochastic nature of the grinding process[J]. International Journal of Machine Tools and Manufacture, 2003, 43(15):1579-1593.
刘月明, 巩亚东, 曹振轩. 基于数值建模的砂轮形貌仿真与测量[J]. 机械工程学报, 2012,48(23): 184-190.
LIU Y M, GONG Y D, CAO ZH X. Analysis of numerical grinding wheel topology and experimental measurement[J]. Journal of Mechanical Engineering, 2012,48(23): 184-190.(in Chinese)
ZHAO C Y, LI J Y, WANG W X. Forming mechanisms based simulation and prediction of grinding surface roughness for abrasive belt rail grinding[J]. Procedia CIRP, 2020, 87: 503-508.
费亚. 预应力砂带磨削表面数值模拟及实验研究[D]. 重庆: 重庆大学, 2017.
FEI Y. Surface of Numerical Simulation and Experimental Research on the Prestressed Abrasive Belt Grinding [D]. Chongqing: Chongqing University, 2017. (in Chinese)
ZHANG Z Z, YAO P, WANG J, et al. Nanomechanical characterization of RB-SiC ceramics based on nanoindentation and modelling of the ground surface roughness[J]. Ceramics International, 2020, 46(5): 6243-6253.
JIANG Y, GUO Q. Simulation of multi-axis grinding considering runout based on envelope theory[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3526-3534.
孙金升, 吕玉山. 磨粒有序化砂轮磨削规则表面的仿真研究[J]. 机械制造, 2018, 56(6): 58-60,69.
SUN J SH, LÜ Y SH. Simulation study on grinding regular surface with ordered abrasive wheel [J]. Machinery, 2018, 56(6): 58-60,69.(in Chinese)
梁志强, 黄迪青, 周天丰, 等. 螺旋伞齿轮磨削表面形貌仿真与试验研究[J]. 机械工程学报, 2019,55(3): 191-198.
LIANG ZH Q, HUANG D Q, ZHOU T F, et al. Simulation and experimental research on grinding surface topography of spiral bevel gear[J]. Journal of Mechanical Engineering, 2019,55(3): 191-198.(in Chinese)
田爱玲, 孙钊, 于洵, 等. 非高斯随机粗糙表面的数字模拟[J]. 系统仿真学报, 2009,21(10): 2840-2842.
TIAN A L, SUN ZH, YU X, et al. Numerical simulation of non-Gaussian random roughness surface[J]. Journal of System Simulation, 2009,21(10): 2840-2842.(in Chinese)
HU Y Z, TONDER K. Simulation of 3-D random rough surface by 2-D digital filter and Fourier analysis[J]. International Journal of Machine Tools and Manufacture, 1992, 32(1/2): 83-90.
HILL I D, HILL R, HOLDER R L. Algorithm AS 99: fitting Johnson curves by moments[J]. Applied Statistics, 1976, 25(2): 180.
JOHNSON N L. Systems of frequency curves generated by methods of translation[J]. Biometrika, 1949, 36(1/2): 149-176.
郑佳华. 金刚石砂轮分时修整的曲面微沟槽精密加工研究[D]. 广州: 华南理工大学, 2013.
ZHENG J H. Micro Grooves Precision Processing on Curved Surface Based on the Time-share Dressing of Diamond Grinding Wheel[D]. Guangzhou: South China University of Technology, 2013. (in Chinese)
姚旺. 反应烧结碳化硅材料磨削去除机理和加工参数优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
YAO W. Investigation on Material Removal Mechanisms and Grinding Parameters Optimization of Reaction Bonded Silicon Carbide [D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese)
姚鹏, 王伟, 黄传真, 等. 石英玻璃的单颗磨粒划擦应力场解析模型及损伤可控磨削机理研究[J]. 机械工程学报, 2018,54(21): 191-204.
YAO P, WANG W, HUANG CH ZH, et al. Analytical model for the elastic stress field during scratching and controllable precision grinding mechanisms of fused silica[J]. Journal of Mechanical Engineering, 2018,54(21): 191-204.(in Chinese)
王紫光, 康仁科, 周平, 等. 单晶硅反射镜的超精密磨削工艺[J]. 光学 精密工程, 2019, 27(5):1087-1095.
WANG Z G, KANG R K, ZHOU P, et al. Ultra-precision grinding of monocrystalline silicon reflector[J]. Opt. Precision Eng., 2019, 27(5):1087-1095. (in Chinese)
王伟, 姚鹏, 王军, 等. 石英玻璃的热辅助高效塑性域干磨削[J]. 光学 精密工程, 2016,24(1): 83-93.
WANG W, YAO P, WANG J, et al. Heat-assisted high efficiency ductile dry grinding of fused silica[J]. Opt. Precision Eng., 2016,24(1): 83-93.(in Chinese)
0
Views
121
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution