Zhong-wei TAN, Jing-ya YANG, Yan LIU, et al. Enhanced fiber optic bending senor based on convolutional neural network[J]. Optics and precision engineering, 2020, 28(7): 1454-1461.
DOI:
Zhong-wei TAN, Jing-ya YANG, Yan LIU, et al. Enhanced fiber optic bending senor based on convolutional neural network[J]. Optics and precision engineering, 2020, 28(7): 1454-1461. DOI: 10.37188/OPE.20202807.1454.
Enhanced fiber optic bending senor based on convolutional neural network
To improve the sensitivity and cost-efficiency of a fiber bending sensor and to increase its linear range
a method based on a deep neural network was proposed to classify different bending angles and directions of plastic fiber. Plastic fiber with side throw sensitization processing was used to collect speckle images of different bending angles at the output end of the fiber. Data set one was made with five types of bending angle and data set two contained seven types of bending angle. After the pretreatment of image data
a multilayer convolution neural network was used to analyze the speckle image. The convolution and pooling provided speckle image features. A softmax classification was used for classification accuracy. Finally
the effect of two different convolutions on the classification of the neural network model was compared. The results show that the classification accuracy reaches 96% when the angle interval of fiber bending in the data set one is 5°. The theoretical and practical analysis results show that the scheme has a high recognition rate. Moreover
the realization of this method is expected to provide a new type of simple and efficient fiber bending sensor.
关键词
Keywords
references
K T V GRATTAN , T SUN . Fiber optic sensor technology:an overview . Sensors and Actuators A(Physical) , 2000 . 82 ( 1/3 ): 40 - 61 . http://d.old.wanfangdata.com.cn/Periodical/shdxxb201401003 http://d.old.wanfangdata.com.cn/Periodical/shdxxb201401003 .
H L ZHANG , Z F WU , P P SHUM , 等 . Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing . Journal of Optics , 2016 . 18 ( 8 ): 085705 DOI: 10.1088/2040-8978/18/8/085705 http://doi.org/10.1088/2040-8978/18/8/085705 .
K YANG , J HE , C LIAO , 等 . Femtosecond laser inscription of fiber Bragg grating in twin-core few-mode fiber for directional bend sensing . Journal of Lightwave Technology , 2017 . 35 ( 21 ): 4670 - 4676 . DOI: 10.1109/JLT.2017.2750407 http://doi.org/10.1109/JLT.2017.2750407 .
G K SUN , D M QU , G YAN , 等 . Bending deformation of optical fiber sensing and shape reconstruction of soft pneumatic driver . Opt. Precision Eng , 2019 . 27 ( 5 ): 1052 - 1059 . http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201905007 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201905007 .
Y L HE , X ZHANG , G K SUN , 等 . Flexible curvature sensor based on composite substrate . Opt. Precision Eng , 2019 . 27 ( 6 ): 1270 - 1276 . http://www.cqvip.com/QK/92835X/201906/7002462031.html http://www.cqvip.com/QK/92835X/201906/7002462031.html .
Q WANG , Y LIU . Optical fiber curvature sensor based on MMF-SCF-MMF structur . Optical Fiber Technology , 2018 . 43 ( 10 ): 1 - 5 . https://www.sciencedirect.com/science/article/pii/S1068520018300531 https://www.sciencedirect.com/science/article/pii/S1068520018300531 .
L A DANISCH . Bend enhanced fiber optic sensors . SPIE , 1993 . 1795 204 - 214 . http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC025739658/ http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC025739658/ .
DANISCH L A. Fiber optic bending and positioning sensor including a light emission surface formed on a portion of a light guide, United States[P]. 5321257, 1994-6-14.
申亚萍.曲率光纤传感器关键技术的研究[D].北京: 北京交通大学, 2019.
SHEN Y P. Research on the Key Technology of Curvature Fiber Optic Sensor[D].Beijing: Beijing Jiaotong University, 2019. (in Chinese)
H T DI , Y T LI , K Y LIU , 等 . Hand gesture monitoring using fiber-optic curvature sensors . Applied Optics , 2019 . 58 ( 29 ): 7935 - 7942 . DOI: 10.1364/AO.58.007935 http://doi.org/10.1364/AO.58.007935 .
R FLORENTIN , V KERMENE , J BENOIST , 等 . Shaping the light amplified in a multimode fiber . Light:Science & Applications , 2016 . 6 ( 2 ): e16208 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201701014 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201701014 .
L C YI , BENGIO Y , HINTON G. . Deep learning . Nature , 2015 . 521 ( 7553 ): 436 - 444 . DOI: 10.1038/nature14539 http://doi.org/10.1038/nature14539 .
KRIZHEVSKY A, SUTSKEVER I, HINTON G.E. Image Net classification with deep convolutional neural networks[C]. International Conference on Neural Information Processing Systems. NY USA: Advances in neural information processing systems, 2012: 1097-1105.
P WANG , J DI . Deep learning-based object classification through multimode fiber via a CNN-architecture SpeckleNet . Applied Optics , 2018 . 57 ( 28 ): 8258 - 8263 . DOI: 10.1364/AO.57.008258 http://doi.org/10.1364/AO.57.008258 DOI: 10.1364/AO.57.008258 http://doi.org/10.1364/AO.57.008258 .
N BOTHANI , E KAKKAVA , M CHRISTOPHE , 等 . Learning to see through multimode fibers . Optical , 2018 . 5 ( 8 ): 960 - 966 . https://arxiv.org/pdf/1805.05614 https://arxiv.org/pdf/1805.05614 .
DI H T, SUN S, YU J, et al. Novel optical fiber sensor for deformation measurement[C].5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment. Washington: Proceeding of SPIE, 2010: 7656, 76561C-1-76561C-7.