浏览全部资源
扫码关注微信
1.西安财经大学 信息学院, 陕西 西安 710010
2.西北大学 信息科学与技术学院, 陕西 西安 710127
Received:11 February 2020,
Revised:01 April 2020,
Accepted:01 April 2020,
Published:15 July 2020
移动端阅览
Fu-qun ZHAO. Hierarchical point cloud denoising algorithm[J]. Optics and precision engineering, 2020, 28(7): 1618-1625.
Fu-qun ZHAO. Hierarchical point cloud denoising algorithm[J]. Optics and precision engineering, 2020, 28(7): 1618-1625. DOI: 10.37188/OPE.20202807.1618.
三维激光扫描设备获取的初始点云模型中含有较多的噪声点,不利于后期的点云处理,需要将其进行剔除。为了有效地保持点云的尖锐几何特征,本文提出一种由粗到精的层次化点云去噪算法。首先构造点及其邻域点的张量投票矩阵,通过计算该矩阵的特征值和特征向量构造扩散张量,并基于该扩散张量利用各向异性扩散方程进行循环滤波,从而实现点云初始粗去噪;然后计算滤波后点云的曲率特征,并根据曲率值进一步删除点云中的噪声点,从而实现点云精确去噪;最后通过计算点云熵值对去噪算法进行定量评价。实验结果表明,本文提出的点云去噪算法具有较大的熵值、较小的去噪误差和较高的执行效率。因此说,该层次化点云去噪算法在保持尖锐几何特征的同时,可以快速精确剔除噪声点,是一种有效的点云去噪算法。
The initial point cloud model acquired by 3D laser scanning equipment contains more noise points that is not good for the later point cloud processing. Therefore
the noise needs to be deleted. A hierarchical point cloud coarse-to-fine denoising algorithm was proposed for effective retention of the sharp geometric features of the point cloud. The tensor voting matrix of the points and their neighbors was constructed. In addition
the diffusion tensor was constructed by calculating the eigenvalues and eigenvectors of the matrix. The diffusion tensor-based anisotropic diffusion equation was applied for cyclic filtering
to realize the initial coarse denoising of the point cloud. Further
the curvature feature of the point cloud was calculated post-filtering. To achieve fine denoising
the noise points in the point cloud were further deleted according to the curvature value. Finally
the point cloud entropy was calculated for quantitative evaluation of the denoising algorithm. The experimental results demonstrate that the proposed point cloud denoising algorithm exhibited a smaller denoising error
higher entropy value
and high execution efficiency. The proposed hierarchical point cloud denoising algorithm can quickly and accurately delete noise points
while retaining sharper geometric features of the point cloud. Therefore
it is an effective point cloud denoising algorithm.
赵 传 , 张 保明 , 余 东行 , 等 . 利用迁移学习的机载激光雷达点云分类 . 光学 精密工程 , 2019 . 27 ( 7 ): 1601 - 1612 . http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201907022 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201907022 .
CH ZHAO , B M ZHANG , D X YU , 等 . Airborne LiDAR point cloud classification using transfer learning . Opt. Precision Eng. , 2019 . 27 ( 7 ): 1601 - 1612 . http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201907022 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201907022 .
MUELLER , A CHRISTIAN , Birk , 等 . Visual object categorization based on hierarchical shape motifs learned from noisy point cloud decompositions . Journal of Intelligent and Robotic Systems , 2019 . ( 1 ): 1 - 26 .
杨 稳 , 周 明全 , 耿 国华 , 等 . 层次优化的颅骨点云配准 . 光学 精密工程 , 2019 . 27 ( 12 ): 2730 - 2739 . http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201912026 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201912026 .
W YANG , M Q ZHOU , G H GENG , 等 . Hierarchical optimization of skull point cloud registration . Opt. Precision Eng. , 2019 . 27 ( 12 ): 2730 - 2739 . http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201912026 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201912026 .
王 雅男 , 王 挺峰 , 田 玉珍 , 等 . 基于改进的局部表面凸性算法三维点云分割 . 中国光学 , 2017 . 10 ( 3 ): 348 - 354 . http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201703008 http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201703008 .
Y N WANG , T F WANG , Y ZH TIAN , 等 . Improved local convexity algorithm of segmentation for 3D point cloud . Chinese Optics , 2017 . 10 ( 3 ): 348 - 354 . http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201703008 http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201703008 .
N POLAT , M UYSAL . Investigating performance of airborne LiDAR data filtering algorithms for DTM generation . Measurement , 2015 . 63 61 - 68 . DOI: 10.1016/j.measurement.2014.12.017 http://doi.org/10.1016/j.measurement.2014.12.017 .
徐 少平 , 林 珍玉 , 李 崇禧 , 等 . 采用训练策略实现的快速噪声水平估计 . 中国图象图形学报 , 2019 . 24 ( 11 ): 1882 - 1892 . DOI: 10.11834/jig.190064 http://doi.org/10.11834/jig.190064 .
SH P XU , ZH Y LIN , CH X LI , 等 . Fast noise level estimation algorithm adopting training strategy . Journal of Image and Graphics , 2019 . 24 ( 11 ): 1882 - 1892 . DOI: 10.11834/jig.190064 http://doi.org/10.11834/jig.190064 .
Z XU , A FOI . Anisotropic denoising of 3D point clouds by aggregation of multiple surface-adaptive estimates . IEEE transactions on visualization and computer graphics , 2019 . 99 ( 12 ): 1 - 10 .
赵 凯 , 徐 友春 , 李 永乐 , 等 . 基于VG-DBSCAN算法的大场景散乱点云去噪 . 光学学报 , 2018 . 38 ( 10 ): 370 - 375 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201810047 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201810047 .
K ZHAO , Y CH XU , Y L LI , 等 . Large-scale scattered point-cloud denoising based on VG-DBSCAN algorithm . Acta Optica Sinica , 2018 . 38 ( 10 ): 370 - 375 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201810047 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201810047 .
戴 士杰 , 任 永潮 , 张 慧博 . 各向异性扩散滤波的三维散乱点云平滑去噪算法 . 计算机辅助设计与图形学学报 , 2018 . 30 ( 10 ): 1843 - 1849 . http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201810008 http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201810008 .
SH J DAI , Y CH REN , H B ZHANG . Study on smooth denoising of 3D scattered point clouds with anisotropic diffusion filtering . Journal of Computer-Aided Design & Computer Graphics , 2018 . 30 ( 10 ): 1843 - 1849 . http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201810008 http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201810008 .
李 鹏 , 邹 杨 , 姚 正安 . 四阶各向异性扩散方程在图像放大中的应用 . 中国图象图形学报 , 2013 . 18 ( 10 ): 1261 - 1269 . DOI: 10.11834/jig.20131006 http://doi.org/10.11834/jig.20131006 .
P LI , Y ZOU , ZH A YAO . Fourth-order anisotropic diffusion equations for image zooming . Journal of Image and Graphics , 2013 . 18 ( 10 ): 1261 - 1269 . DOI: 10.11834/jig.20131006 http://doi.org/10.11834/jig.20131006 .
A Y GHONEI . A smoothed particle hydrodynamic-sphase field method with radial basis functions and moving least squares for meshfree simulation of dendritic solidification . Applied Mathematical Modelling , 2020 . 77 ( 2 ): 1704 - 1741 .
邓 吉 , 李 健 , 封 皓 , 等 . 不连续相位跳变点的三维深度分割 . 光学 精密工程 , 2019 . 27 ( 11 ): 2459 - 2466 . http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201911021 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201911021 .
J DENG , J LI , H FENG , 等 . Three-dimensional depth segmentation technique utilizing discontinuities of wrapped phase sequence . Opt. Precision Eng. , 2019 . 27 ( 11 ): 2459 - 2466 . http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201911021 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201911021 .
武剑洁.基于点的散乱点云处理技术的研究[D].武汉: 华中科技大学, 2004: 10-12.
WU J J. Research on the Technology of Point Based Scattered Point Cloud Processing [D]. Wuhan: Huazhong University of Science and Technology, 2004: 10-12. (in Chinese)
Y ZHANG , X Q LU . A three-dimensional diffusion filtering model establishment and analysis for point cloud intensity noise . Journal of Computing and Information Science in Engeering , 2017 . 17 ( 1 ): 011010 DOI: 10.1115/1.4035000 http://doi.org/10.1115/1.4035000 .
E MATTEI , A CASTRODAD . Point cloud denoising via moving RPCA . Computer Graphics Forum , 2017 . 36 ( 8 ): 123 - 137 . DOI: 10.1111/cgf.13068 http://doi.org/10.1111/cgf.13068 .
0
Views
230
下载量
11
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution