浏览全部资源
扫码关注微信
哈尔滨工程大学 机电工程学院,黑龙江 哈尔滨 150001
Received:29 April 2021,
Revised:28 May 2021,
Published:15 December 2021
移动端阅览
罗阿妮,邹云涛,肖诗松等.四杆张拉整体单元的弯曲变形[J].光学精密工程,2021,29(12):2806-2817.
LUO A-ni,ZOU Yun-tao,XIAO Shi-song,et al.Bending deformation of four-bar tensegrity element[J].Optics and Precision Engineering,2021,29(12):2806-2817.
罗阿妮,邹云涛,肖诗松等.四杆张拉整体单元的弯曲变形[J].光学精密工程,2021,29(12):2806-2817. DOI: 10.37188/OPE.2021.0242.
LUO A-ni,ZOU Yun-tao,XIAO Shi-song,et al.Bending deformation of four-bar tensegrity element[J].Optics and Precision Engineering,2021,29(12):2806-2817. DOI: 10.37188/OPE.2021.0242.
为了扩大张拉整体的内部空间,实现展开前空间占用小,展开后内部空间的有效利用率高,对张拉整体轴向折叠方式及折展特性进行了研究。根据张拉整体的理论基础,介绍了节点矩阵、连接矩阵和构件矩阵,分析了张拉整体轴向折叠的意义以及存在的问题,并介绍了两种张拉整体沿轴向折叠的方法。在这两种折叠方式的基础上提出弯杆张拉整体,并给出弯杆张拉整体节点坐标的求解方法。最后,分析弯杆张拉整体在完全展开状态直至上下水平面重合时的弹性变形量,利用有限元软件分析得到模型完全压缩时节点的弯曲角度临界值。高度为270 mm,半径为200 mm的四杆张拉整体在轴向完全压缩时,上、下底面的相对偏转角为57°,杆长压缩率为13%。利用竹节作为杆构件时弯曲节点连接两杆构件所成角度不得大于90°。张拉整体直杆变弯有效地解决了杆构件间的干涉问题,内部有效利用空间增大,实现了轴向折叠。
In order to expand the internal space in tensegrity elements, realize small space occupation before deployment, and effectively utilize the internal space after deployment, the axial folding mode and folding characteristics of tensegrity elements are studied. First, according to the tensegrity theory, the node, connection, and component matrices are introduced. Then, the axial-folding significance of tensegrity elements and the problems encountered during axial folding are proposed, and two axial folding methods of tensegrity elements are introduced. Then, on the basis of the two folding methods, the bending bar tensegrity is proposed, and the solution method of the node coordinates of the bending bar tensegrity is given. Finally, the elastic deformation of the bending bar tensegrity element in the fully expanded state until the upper and lower horizontal planes coincide is analyzed, and the limit-bending angle of the node is obtained using the finite element software. When the four-bar tensegrity element with a height of 270 mm and radius of 200 mm is fully compressed, the relative deflection angle of the upper and lower bottom surfaces is 57°, and the compression ratio of the bar length is 13%. When bamboo material is used for a bar member, the angle of the bending joint connecting the two bar members is at most 90°. The straight to bending bar tensegrity effectively avoids the interference between the bar components, which increases the effective utilization of internal space and realizes axial folding.
ZHANG J Y , OHSAKI M . Regular Truncated Tetrahedral Structures [M]. Tokyo : Springer Japan , 2015 : 233 - 248 . doi: 10.1007/978-4-431-54813-3_8 http://dx.doi.org/10.1007/978-4-431-54813-3_8
蒋淑慧 . 结构冗余度理论及其在张拉整体穹顶中的应用 [D]. 杭州 : 浙江大学 , 2018 . doi: 10.5152/tjg.2019.18418 http://dx.doi.org/10.5152/tjg.2019.18418
JIANG SH H . Redundancy Theory and it's Application in Tensegrity Dome Comprised of 3 -bar Prisms [D]. Hangzhou : Zhejiang University , 2018 . (in Chinese) . doi: 10.5152/tjg.2019.18418 http://dx.doi.org/10.5152/tjg.2019.18418
FADEYEV D , ZHAKATAYEV A , KUZDEUOV A , et al . Generalized dynamics of stacked tensegrity manipulators [J]. IEEE Access , 2019 , 7 : 63472 - 63484 . doi: 10.1109/access.2019.2916681 http://dx.doi.org/10.1109/access.2019.2916681
MIRLETZ B T , PARK I W , QUINN R D , et al . Towards bridging the reality gap between tensegrity simulation and robotic hardware [C]. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 282,2015 , Hamburg, Germany. IEEE , 2015 : 5357 - 5363 . doi: 10.1109/iros.2015.7354134 http://dx.doi.org/10.1109/iros.2015.7354134
GEBARA C A , CARPENTER K C , WOODMANSEE A . Tensegrity ocean world landers [C]. AIAA Scitech 2019 Forum. San Diego, California. Reston, Virginia : AIAA , 2019 . doi: 10.2514/6.2019-0868 http://dx.doi.org/10.2514/6.2019-0868
BECCARELLI P . The Design , Analysis and Construction of Tensile Fabric Structures [M]. Springer International Publishing , 2015 . doi: 10.1007/978-3-319-02228-4_2 http://dx.doi.org/10.1007/978-3-319-02228-4_2
葛家琪 , 张爱林 , 刘鑫刚 , 等 . 索穹顶结构张拉找形与承载全过程仿真分析 [J]. 建筑结构学报 , 2012 , 33 ( 4 ): 1 - 11 .
GE J Q , ZHANG A L , LIU X G , et al . Analysis of tension form-finding and whole loading process simulation of cable dome structure [J]. Journal of Building Structures , 2012 , 33 ( 4 ): 1 - 11 . (in Chinese)
ALOUI O , FLORES J , ORDEN D , et al . Cellular morphogenesis of three-dimensional tensegrity structures [J]. Computer Methods in Applied Mechanics and Engineering , 2019 , 346 : 85 - 108 . doi: 10.1016/j.cma.2018.10.048 http://dx.doi.org/10.1016/j.cma.2018.10.048
SCHORR P , LI E R C , KAUFHOLD T , et al . Kinematic analysis of a rolling tensegrity structure with spatially curved members [J]. Meccanica , 2021 , 56 ( 4 ): 953 - 961 . doi: 10.1007/s11012-020-01199-x http://dx.doi.org/10.1007/s11012-020-01199-x
LI H Y , WU Y , ZHANG L , et al . Seismic energy dissipation of periodic assembly tensegrity system [C]. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems , 2020 , 1137 : 113790N . doi: 10.1117/12.2557075 http://dx.doi.org/10.1117/12.2557075
LIU S B , LI Q , WANG P F , et al . Kinematic and static analysis of a novel tensegrity robot [J]. Mechanism and Machine Theory , 2020 , 149 : 103788 . doi: 10.1016/j.mechmachtheory.2020.103788 http://dx.doi.org/10.1016/j.mechmachtheory.2020.103788
GONZÁLEZ A , LUO A N , SHI D Y . Multi-stable deployment of unitary tensegrity structures [J]. IOP Conference Series: Materials Science and Engineering , 2019 , 649 : 012015 . doi: 10.1088/1757-899x/649/1/012015 http://dx.doi.org/10.1088/1757-899x/649/1/012015
KAN Z Y , PENG H J , CHEN B , et al . Nonlinear dynamic and deployment analysis of clustered tensegrity structures using a positional formulation FEM [J]. Composite Structures , 2018 , 187 : 241 - 258 . doi: 10.1016/j.compstruct.2017.12.050 http://dx.doi.org/10.1016/j.compstruct.2017.12.050
张晨阳 . 张拉整体式伸展臂设计与折展分析 [D]. 哈尔滨 : 哈尔滨工程大学 , 2019 . doi: 10.30919/esmm5f601 http://dx.doi.org/10.30919/esmm5f601
ZHANG CH Y . Deploying and Folding Analysis and Design of Tensegrity Mast [D]. Harbin : Harbin Engineering University , 2019 . (in Chinese) . doi: 10.30919/esmm5f601 http://dx.doi.org/10.30919/esmm5f601
罗阿妮 , 李旭 , 李全贺 , 等 . 三杆张拉整体折展过程动力学分析 [J]. 哈尔滨工程大学学报 , 2016 , 37 ( 7 ): 974 - 978 . doi: 10.11990/jheu.201505069 http://dx.doi.org/10.11990/jheu.201505069
LUO A N , LI X , LI Q H , et al . Dynamic analysis of the three-bar tensegrity deployable structure [J]. Journal of Harbin Engineering University , 2016 , 37 ( 7 ): 974 - 978 . (in Chinese) . doi: 10.11990/jheu.201505069 http://dx.doi.org/10.11990/jheu.201505069
田伟 . 张拉整体式变刚度弹簧的分析 [D]. 哈尔滨 : 哈尔滨工程大学 , 2017 .
TIAN W . The Analysis of Tensegrity Variable Stiffness Spring [D]. Harbin : Harbin Engineering University , 2017 . (in Chinese)
0
Views
421
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution