LIU Xueyan,XU Yuda,LEI Jianxin,et al.Three-dimensional light field endoscope calibration based on light field disparity amplifier and super-resolution network[J].Optics and Precision Engineering,2022,30(05):510-517.
LIU Xueyan,XU Yuda,LEI Jianxin,et al.Three-dimensional light field endoscope calibration based on light field disparity amplifier and super-resolution network[J].Optics and Precision Engineering,2022,30(05):510-517. DOI: 10.37188/OPE.2021.0332.
Three-dimensional light field endoscope calibration based on light field disparity amplifier and super-resolution network
Three-dimensional (3D) light field imaging in laparoscopic surgery is an emerging technology, which has the potential to enable 3D imaging. Calibration is fundamental for the 3D light field endoscope (LFE) to accomplish 3D imaging and is essential but challenging as the light field bandwidth product is limited; moreover, the light field disparity of a 3D LFE is smaller than that of the conventional light field camera, which makes it difficult to achieve acceptable light field calibration results. In this paper, the small light field disparity was amplified by computing the distance between two feature points in a 3D scene. Compared with the conventional light field disparity between different feature points in different sub-aperture images, the distance between the two feature points enlarges the distance, i.e., the disparity between point-to-point and point-to-line, in the light field image, which leads to better calibration accuracy. Furthermore, an improved super-resolution network based on SRDenseNet was proposed, where cascaded channel attention dense blocks were applied to acquire the features of low-resolution light field images. The super-resolution network improved the two-dimensional (2D) spatial resolution and 2D angular resolution in the 4D light field data simultaneously and improved 3D LFE calibration accuracy indirectly. The experimental results show that the amplified light field disparity and higher resolution facilitated a higher calibration performance, and the re-projection error of the 3D LFE calibration decreased by 16%, while the
R
-square increased by 6%.
关键词
Keywords
references
LIU J D , CLAUS D , XU T F , et al . Light field endoscopy and its parametric description [J]. Optics Letters , 2017 , 42 ( 9 ): 1804 - 1807 . doi: 10.1364/ol.42.001804 http://dx.doi.org/10.1364/ol.42.001804
DANSEREAU D G , PIZARRO O , WILLIAMS S B . Decoding, calibration and rectification for lenselet-based plenoptic cameras [C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition . 2328,2013 , Portland , OR , USA . IEEE , 2013 : 1027 - 1034 . doi: 10.1109/cvpr.2013.137 http://dx.doi.org/10.1109/cvpr.2013.137
ZHANG Q , ZHANG C P , LING J B , et al . A generic multi-projection-center model and calibration method for light field cameras [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2019 , 41 ( 11 ): 2539 - 2552 . doi: 10.1109/TPAMI.2018.2864617 http://dx.doi.org/10.1109/TPAMI.2018.2864617
ZHOU P , CAI W J , YU Y L , et al . A two-step calibration method of lenslet-based light field cameras [J]. Optics and Lasers in Engineering , 2019 , 115 : 190 - 196 . doi: 10.1016/j.optlaseng.2018.11.024 http://dx.doi.org/10.1016/j.optlaseng.2018.11.024
FAN L L , ZHAO H W , ZHAO H Y , et al . Survey of target detection based on deep convolutional neural networks [J]. Opt. Precision Eng. , 2020 , 28 ( 5 ): 1152 - 1164 . (in Chinese)
DONG C , LOY C C , HE K M , et al . Learning a deep convolutional network for image super-resolution [C]. Computer Vision-ECCV 2014 , 2014 : 184 - 199 . doi: 10.1007/978-3-319-10593-2_13 http://dx.doi.org/10.1007/978-3-319-10593-2_13
KIM J , LEE J K , LEE K M . Accurate image super-resolution using very deep convolutional networks [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2730,2016 , Las Vegas, NV, USA. IEEE , 2016 : 1646 - 1654 . doi: 10.1109/cvpr.2016.182 http://dx.doi.org/10.1109/cvpr.2016.182
TONG T , LI G , LIU X J , et al . Image super-resolution using dense skip connections [C]. 2017 IEEE International Conference on Computer Vision (ICCV). 2229,2017 , Venice, Italy. IEEE , 2017 : 4809 - 4817 . doi: 10.1109/iccv.2017.514 http://dx.doi.org/10.1109/iccv.2017.514
LEDIG C , THEIS L , HUSZÁR F , et al . Photo-realistic single image super-resolution using a generative adversarial network [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2126,2017 , Honolulu, HI, USA. IEEE , 2017 : 105 - 114 . doi: 10.1109/cvpr.2017.19 http://dx.doi.org/10.1109/cvpr.2017.19
DONG C , LOY C C , TANG X O . Accelerating the super-resolution convolutional neural network [C]. Computer Vision-ECCV 2016 , 2016 : 391 - 407 . doi: 10.1007/978-3-319-46475-6_25 http://dx.doi.org/10.1007/978-3-319-46475-6_25
SHI W Z , CABALLERO J , HUSZÁR F , et al . Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2730,2016 , Las Vegas, NV, USA. IEEE , 2016 : 1874 - 1883 . doi: 10.1109/cvpr.2016.207 http://dx.doi.org/10.1109/cvpr.2016.207
JOHNSON J , ALAHI A , LI F F . Perceptual losses for real-time style transfer and super-resolution [C]. Computer Vision-ECCV 2016 , 2016 : 694 - 711 . doi: 10.1007/978-3-319-46475-6_43 http://dx.doi.org/10.1007/978-3-319-46475-6_43
ZHOU P , GU C , ZHANG W Z , et al . Light field endoscope calibration based on virtual objective lens and virtual feature points [J]. Optical Engineering , 2020 , 59 ( 10 ): 104101 . doi: 10.1117/1.OE.59.10.104101 http://dx.doi.org/10.1117/1.OE.59.10.104101
ZHANG Y L , LI K P , LI K , et al . Image super-resolution using very deep residual channel attention networks [C]. Computer Vision-ECCV 2018 , 2018 : 286 - 301 . doi: 10.1007/978-3-030-01234-2_18 http://dx.doi.org/10.1007/978-3-030-01234-2_18