WANG Dian-wei,XING Zhi-bin,HAN Peng-fei,et al.Low illumination panoramic image enhancement algorithm based on simulated multi-exposure fusion[J].Optics and Precision Engineering,2021,29(02):349-362.
WANG Dian-wei,XING Zhi-bin,HAN Peng-fei,et al.Low illumination panoramic image enhancement algorithm based on simulated multi-exposure fusion[J].Optics and Precision Engineering,2021,29(02):349-362. DOI: 10.37188/OPE.20212902.0349.
Low illumination panoramic image enhancement algorithm based on simulated multi-exposure fusion
Panoramic images captured under low-illumination conditions suffer from low contrast and poor visual effects. To address these problems, we propose a low-illumination panoramic image enhancement algorithm based on simulated multi-exposure fusion. First, the original image is converted to HSV color space; then, the optimal exposure rate is estimated by using a metric of image information entropy, and the
V
component is enhanced by using an intensity transform function to obtain an overexposed image. Second, a medium-exposure image is generated by using an exposure interpolation method, which utilizes the low-light image and overexposed image as input. Third, the fused image is obtained by employing a multi-fusion strategy in which the original low-illumination image, medium-exposure image, and overexposed image are fused. Finally, the detailed information is enhanced by using a multi-scale detail boosting method. The proposed method exhibits better performance compared with NPE, LIME, SRIE, Li, Ying, and RtinexNet algorithms. In case of panoramic images of different scenes, the lightness order error is 322, natural image quality evaluator is 2.32, blind/referenceless image spatial quality evaluator is 5.71, and structure similarity index is 0.82. The comprehensive performance of the proposed method is found to be better than that of other comparison algorithms. Experimental results show that the quality of the low-illumination panoramic image can be improved effectively by using the proposed algorithm.
FENG W , WU G M , ZHAO D X , et al . . Multi-image fusion Retinex for low-light image enhancement [J]. Opt. Precision Eng. , 2020 , 28 ( 3 ): 736 - 744 . (in Chinese)
HUANG H , DONG L L , LIU X F , et al . . Improved retinex low light image enhancement method [J]. Opt. Precision Eng. , 2020 , 28 ( 8 ): 1835 - 1849 . (in Chinese)
WANG D W , HAN P F , FAN J L , et al . . Multispectral image enhancement based on illuminance-reflection imaging model and morphology operation [J]. Acta Physica Sinica , 2018 , 67 ( 21 ): 210701 . (in Chinese)
WANG CH , ZHANG Y CH . Night image enhancement based on pixel level adaptive image fusion [J]. Chinese Journal of Liquid Crystals and Displays , 2019 , 34 ( 9 ): 888 - 896 . (in Chinese)
LAND , EDWIN H . The retinex theory of color vision [J]. Scientific American , 1977 , 237 ( 6 ): 108 - 128 .
WANG S , ZHENG J , HU H M , et al . . Naturalness preserved enhancement algorithm for non-uniform illumination images [J]. IEEE Transactions on Image Processing , 2013 , 22 ( 9 ): 3538 - 3548 .
GUO X , LI Y , LING H . LIME: Low-light image enhancement via illumination map estimation [J]. IEEE Transactions on Image Processing , 2017 , 26 ( 2 ): 982 - 993 .
FU X , ZENG D , HUANG Y , et al .. A weighted variational model for simultaneous reflectance and illumination estimation [C]. IEEE Conference on Computer Vision and Pattern Recognition , 2016 : 2782 - 2790 .
LI M , LIU J , YANG W , et al . . Structure-revealing low-light image enhancement via robust retinex model [J]. IEEE Transactions on Image Processing , 2018 , 27 ( 6 ): 2828 - 2841 .
LORE K G , AKINTAYO A , SARKAR S . LLNet: A deep autoencoder approach to natural low-light image enhancement [J]. Pattern Recognition , 2015 , 61 : 650 - 662 .
WEI C , WANG W , YANG W , et al .. Deep Retinex decomposition for low-light enhancement [C]. Int. Proc. of Brit. Mach. Vis. Conf. (BMVC) , 2018 , 9 : 1 .
CAI J , GU S , ZHANG L . Learning a deep single image contrast enhancer from multi-exposure images [J]. IEEE Transactions on Image Processing , 2018 , 27 ( 4 ): 2049 - 2062 .
WANG R , ZHANG Q , FU C , et al .. Underexposed photo enhancement using deep illumination estimation [C]. In Proc. of IEEE Int. Conf. Comput. Vis. Pattern Rec. (CVPR) , 2019 : 6849 - 6857 .
YANG W , WANG S , FANG Y , et al .. From fidelity to perceptual quality: A semi-supervised approach for low-light image enhancement [C]. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , 2020 , 6 : 1 - 10 .
FU X Y , ZENG D L , HUANG Y , et al . . A fusion-based enhancing method for weakly illuminated images [J]. Signal Processing , 2016 , 129 : 82 - 96 .
LIU S , ZHANG Y . Detail-preserving underexposed image enhancement via optimal weighted multi-exposure fusion [J]. IEEE Transactions on Consumer Electronics , 2019 , 65 ( 3 ): 303 - 311 .
YING Z Q , LI G , REN Y R , et al .. A new image contrast enhancement algorithm using exposure fusion framework [C]. Proc of International Conference on Computer Analysis of Images and Patterns.Berlin : Springer , 2017 : 36 - 46 .
YANG Y , CAO W , WU S , et al . . Multi-scale fusion of two large-exposure-ratio images [J]. IEEE Signal Processing Letters , 2018 , 25 ( 12 ): 1885 - 1889 .
FARBMAN Z , FATTAL R , LISCHINSKI D , et al . . Edge-preserving decompositions for multi-scale tone and detail manipulation [J]. ACM Trans. Graph . 2008 , 27 ( 3 ): 67 : 1 - 67 : 10 .
WANG Q , CHEN W , WU X , et al . . Detail-enhanced multi-scale exposure fusion in YUV color space [J]. IEEE Transactions on Circuits and Systems for Video Technology , 2019 , ( 99 ): 1 - 1 .
WANG Z , BOVIK A C , SHEIKH H R , et al . . Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing , 2004 , 13 ( 4 ): 600 - 612 .
MITTAL A , FELLOW , IEEE , et al . . Making a 'Completely blind' image quality Analyzer [J]. IEEE Signal Processing Letters , 2013 , 20 ( 3 ): 209 - 212 .
MITTAL A , MOORTHY A K , BOVIK A C . No-reference image quality assessment in the spatial domain [J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society , 2012 , 21 ( 12 ): 469 .