浏览全部资源
扫码关注微信
战略支援部队信息工程大学 地理空间信息学院,河南 郑州 450001
Received:03 September 2020,
Revised:01 November 2020,
Published:15 February 2021
移动端阅览
赵传,郭海涛,王优扬等.利用邻域方向分布的机载激光雷达点云建筑物外轮廓提取[J].光学精密工程,2021,29(02):374-387.
ZHAO Chuan,GUO Hai-tao,WANG You-yang,et al.Building outer boundary extraction from ALS point clouds using neighbor point direction distribution[J].Optics and Precision Engineering,2021,29(02):374-387.
赵传,郭海涛,王优扬等.利用邻域方向分布的机载激光雷达点云建筑物外轮廓提取[J].光学精密工程,2021,29(02):374-387. DOI: 10.37188/OPE.20212902.0374.
ZHAO Chuan,GUO Hai-tao,WANG You-yang,et al.Building outer boundary extraction from ALS point clouds using neighbor point direction distribution[J].Optics and Precision Engineering,2021,29(02):374-387. DOI: 10.37188/OPE.20212902.0374.
机载激光雷达点云密度分布不均、建筑物形状不规则且复杂多样等多种因素,导致现有建筑物轮廓提取方法存在参数难以设置、适应性较差等问题,为此本文提出一种利用邻域方向分布的机载激光雷达点云建筑物外轮廓提取方法。首先采用固定邻域点数分析各点的邻域方向分布,以获取不同邻域方向间的夹角,根据建筑物外轮廓点的特点,定义潜在轮廓点并将其视为初始轮廓点进行提取,从而得到初始轮廓点提取结果;考虑到无序轮廓点难以用于实际任务,因此利用建筑物点云构建不规则三角网并对其中的边进行删除、添加等操作,得到仅与初始轮廓点相连的边集,通过非固定边长的扫描方式跟踪轮廓点,并基于设计的规则剔除导致明显锯齿状的轮廓点,从而得到有序、平滑的建筑物外轮廓提取结果。利用具有不同密度分布、不同形状的模拟和真实建筑物点云进行试验,结果表明,方法对不同场景采用相同的参数,均能得到较好的外轮廓提取结果,F1分数优于90.88%。方法在保证提取轮廓F1分数较高的同时,可有效地克服参数难以设置的问题,具有较强的适应性,可为建筑物三维模型重建等应用提供稳定、可靠的建筑物外轮廓信息。
Factors such as uneven point density and various irregular and complex shapes of buildings are common in airborne laser scanning point clouds and cause difficulty in setting parameters and low adaptability of existing building-outline-extraction methods. To address these problems, a novel building-outer-boundary-extraction method using a neighbor point direction distribution is proposed in this study. First, a specific number of neighbor points are used to analyze the neighborhood point direction distribution to obtain the angles between different directions. The concept of a potential boundary point is defined, all potential boundary points are regarded as boundary points based on the characteristics of the building outlines, and the initial building boundary points are retrieved. Because disorder boundary points are difficult to use in actual tasks, a triangulated irregular network is constructed to obtain the edges between points, and processes such as deletion and addition are performed on the edges to acquire edges that link only boundary points. After the deletion of points that cause obvious zigzag, ordered and smooth building boundaries are finally retrieved by point tracing based on unfixed-length edge scanning. Multi-group of simulated and real-scene building point clouds with different point density distributions and shapes are employed in the experiment. The results show that the proposed method can achieve good boundary extraction when the same parameter is set in different scenes. In addition, the F1 scores are found to be higher than 90.88%. The proposed method can ensure high F1 scores of extracted boundaries while effectively overcoming the difficulties in setting parameters and low adaptability. The method can provide stable and reliable building outline information for applications such as three-dimensional building model reconstruction.
SHEN W , ZHANG J , YUAN F . A new algorithm of building boundary extraction based on LiDAR data [C]. 2011 19th International Conference on Geoinformatics , IEEE , 2011 : 1 - 4 .
HE Y , ZHANG C , FRASER C S . An energy minimization approach to automated extraction of regular building footprints from airborne LiDAR data [J]. ISPRS Annals of the Photogrammetry , Remote Sensing and Spatial Information Sciences , 2014 , 2 ( 3 ): 65 - 72 .
ALBERS B , KADA M , WICHMANN A . Automatic extraction and regularization of building outlines from airborne LiDAR point clouds [J]. International Archives of the Photogrammetry , Remote Sensing & Spatial Information Sciences , 2016 , 41 : 555 - 560 .
SREEVALSAN-NAIR J , JINDAL A , KUMARI B . Contour extraction in buildings in airborne lidar point clouds using multiscale local geometric descriptors and visual analytics [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2018 , 11 ( 7 ): 2320 - 2335 .
霍芃芃 , 侯妙乐 , 杨溯 , 等 . 机载LiDAR点云建筑物屋顶轮廓线自动提取研究综述 [J]. 地理信息世界 , 2019 , 26 ( 5 ): 1 - 13 .
HUO P P , HOU M L , YANG SH , et al . . Automatic extraction of building rooftop outlines using Airborne LiDAR: A review [J]. Geomatics World , 2019 , 26 ( 5 ): 1 - 13 . (in Chinese)
赵传 , 张保明 , 陈小卫 , 等 . 一种利用点云邻域信息的建筑物屋顶面高精度自动提取方法 [J]. 测绘学报 , 2017 , 46 ( 9 ): 1123 - 1134 .
ZHAO CH , ZHANG B M , CHEN X W , et al . . Accurate and automatic building roof extraction using neighborhood information of point clouds [J]. Acta Geodaetica et Cartographica Sinica , 2017 , 46 ( 9 ): 1123 - 1134 . (in Chinese)
WIDYANINGRUM E , GORTE B , LINDENBERGH R . Automatic building outline extraction from ALS point clouds by ordered points aided hough transform [J]. Remote Sensing , 2019 , 11 ( 14 ): 1727 - 1755 .
赖旭东 , 万幼川 . 机载激光雷达距离图像的边缘检测研究 [J]. 激光与红外 , 2005 ( 6 ): 444 - 446 .
LAI X D , WAN Y C . The study of the edge detection to the depth-image of light detection and ranging [J]. Laser & Infrared , 2005 ( 6 ): 444 - 446 . (in Chinese)
杨洋 , 张永生 , 马一薇 , 等 . 基于LiDAR数据的建筑物轮廓提取 [J]. 测绘科学 , 2010 , 35 ( 3 ): 203 - 205 .
YANG Y , ZHANG Y SH , MA Y W , et al . . The study on building boundary extraction based on LiDAR data [J]. Science of Surveying and Mapping , 2010 , 35 ( 3 ): 203 - 205 . (in Chinese)
ZHAO Z , DUAN Y , ZHANG Y , et al . . Extracting buildings from and regularizing boundaries in airborne LiDAR data using connected operators [J]. International Journal of Remote Sensing , 2016 , 37 ( 4 ): 889 - 912 .
AWRANGJEB M , FRASER C S . An automatic and threshold-free performance evaluation system for building extraction techniques from airborne LiDAR data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2014 , 7 ( 10 ): 4184 - 4198 .
程亮 , 龚健雅 . LiDAR辅助下利用超高分辨率影像提取建筑物轮廓方法 [J]. 测绘学报 , 2008 , 37 ( 3 ): 391 - 393+399 .
CHENG L , GONG J Y . Building boundary extraction using very high resolution images and LiDAR [J]. Acta Geodaetica et Cartographica Sinica , 2008 , 37 ( 3 ): 391 - 393+399 . (in Chinese)
YU L , LI X , FU C W , et al .. EC-Net: an edge-aware point set consolidation network [C]. Proceedings of the European Conference on Computer Vision (ECCV) , 2018 : 386 - 402 .
GRAHAM R L . An efficient algorithm for determining the convex hull of a finite planar set [J]. Information Processing Letters , 1972 , 1 : 132 - 133 .
SAMPATH A , SHAN J . Building boundary tracing and regularization from airborne LiDAR point clouds [J]. Photogrammetric Engineering & Remote Sensing , 2007 , 73 ( 7 ): 805 - 812 .
TSENGA Y H , HUNGB H C . Extraction of building boundary lines from airborne LiDAR point clouds [J]. International Archives of the Photogrammetry , Remote Sensing & Spatial Information Sciences , 2016 , 40 : 957 - 962 .
MOREIRA A , SANTOS M Y . Concave hull: A k-nearest neighbours approach for the computation of the region occupied by a set of points [C]. Proceedings of the 2007 International Conference on Computer Graphics Theory and Applications , 2007 : 61 – 68 .
EDLESBRUNNER H , KIRKPATRICK D , SEIDEL R . On the shape of a set of points in the plane [J]. IEEE Transactions on Information Theory , 1983 , 29 ( 4 ): 551 - 559 .
SANTOS R CDOS , GALO M , CARRILHO A C . Building boundary extraction from LiDAR data using a local estimated parameter for alpha shape algorithm [J]. International Archives of the Photogrammetry , Remote Sensing & Spatial Information Sciences , Karlsruhe , Germany , 2018 , 42 ( 1 ): 127 - 132 .
SANTOS R CDOS , GALO M , CARRILHO A C . Extraction of building roof boundaries from LiDAR data using an adaptive Alpha-Shape algorithm [J]. IEEE Geoscience and Remote Sensing Letters , 2019 , 16 ( 8 ): 1289 - 1293 .
李云帆 , 谭德宝 , 高广 , 等 . 双阈值Alpha Shapes算法提取点云建筑物轮廓研究 [J]. 长江科学院院报 , 2016 , 33 ( 11 ): 1 - 4 .
LI Y F , TAN D B , GAO G , et al . . Extraction of building contour from point clouds using dual threshold Alpha Shapes algorithm [J]. Journal of Yangtze River Scientific Research Institute , 2016 , 33 ( 11 ): 1 - 4 . (in Chinese)
FENG M , ZHANG T , LI S , et al . . An improved minimum bounding rectangle algorithm for regularized building boundary extraction from aerial LiDAR point clouds with partial occlusions [J]. International Journal of Remote Sensing , 2019 , 41 ( 1 ): 300 - 319 .
冯茂林 . 树木遮挡下的机载LiDAR点云建筑物轮廓提取 [D]. 成都 : 西南交通大学 , 2017 .
FENG M L . Building Outline Extraction Based on Airborne LiDAR Point Cloud under Tree Obscured [D]. Chengdu : Southwest Jiaotong University , 2017 . (in Chinese)
樊晶晶 , 马骊群 , 孙安斌 , 等 . 模式向量法提取点云数据线轮廓点 [J]. 光学 精密工程 , 2019 , 27 ( 7 ): 1640 - 1648 .
FAN J J , MA L Q , SUN A B , et al . . Extraction of line contour points from point cloud data using pattern vector method [J]. Opt. Precision Eng. , 2019 , 27 ( 7 ): 1640 - 1648 . (in Chinese)
MINEO C , PIERCE S G , SUMMAN R . Novel algorithms for 3D surface point cloud boundary detection and edge reconstruction [J]. Journal of Computational Design and Engineering , 2019 , 6 ( 1 ): 81 - 91 .
沈蔚 , 李京 , 陈云浩 , 等 . 基于LiDAR数据的建筑轮廓线提取及规则化算法研究 [J]. 遥感学报 , 2008 , 12 ( 5 ): 692 - 698 .
SHEN W , LI J , CHEN Y H , et al . . Algorithms study of building boundary extraction and normalization based on LiDAR data [J]. Journal of Remote Sensing , 2008 , 12 ( 5 ): 692 - 698 . (in Chinese)
LEE J , HAN S , BYUN Y , et al . . Extraction and regularization of various building boundaries with complex shapes utilizing distribution characteristics of airborne LiDAR points [J]. Etri Journal , 2011 , 33 ( 4 ): 547 - 557 .
AVBELJ J , MULLER R , BAMLER R . A metric for polygon comparison and building extraction evaluation [J]. IEEE Geoscience and Remote Sensing Letters , 2014 , 12 ( 1 ): 170 - 174 .
0
Views
582
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution