浏览全部资源
扫码关注微信
1.中国科学院 沈阳自动化研究所, 辽宁 沈阳 110016
2.中国科学院机器人与智能制造创新研究院,辽宁 沈阳 110016
3.中国科学院大学,北京 100049
4.中国科学院光电信息处理重点实验室,辽宁 沈阳 110016
5.辽宁省图像理解与视觉计算重点实验室,辽宁 沈阳 110016
Received:25 August 2020,
Revised:10 October 2020,
Published:15 April 2021
移动端阅览
鞠默然,罗海波,刘广琦等.采用空间注意力机制的红外弱小目标检测网络[J].光学精密工程,2021,29(04):843-853.
JU Mo-ran,LUO Hai-bo,LIU Guang-qi,et al.Infrared dim and small target detection network based on spatial attention mechanism[J].Optics and Precision Engineering,2021,29(04):843-853.
鞠默然,罗海波,刘广琦等.采用空间注意力机制的红外弱小目标检测网络[J].光学精密工程,2021,29(04):843-853. DOI: 10.37188/OPE.20212904.0843.
JU Mo-ran,LUO Hai-bo,LIU Guang-qi,et al.Infrared dim and small target detection network based on spatial attention mechanism[J].Optics and Precision Engineering,2021,29(04):843-853. DOI: 10.37188/OPE.20212904.0843.
红外弱小目标检测被广泛应用于预警、制导等国防领域中。然而,红外弱小目标所占像素少、缺少形状特征和纹理特征,使得红外弱小目标检测成为一个具有挑战性的课题。针对红外弱小目标检测,提出了一种简单高效的实时红外弱小目标检测网络。检测网络利用自适应感受野融合模块来增加小目标周围的上下文信息,并通过引入空间注意力机制来建立不同区域之间的相关性模型,使不同区域之间的相关性和紧凑性得到加强。为了提高检测网络对目标的定位和正负样本的判别能力,分别利用GIOU loss和Focal loss来设计损失函数。在3个红外弱小目标序列和单帧红外图像上进行实验,检测网络分别取得了91.62%,71.54%,81.77%和90.67%的AP值,且检测速度接近165 FPS。实验结果表明,该红外弱小目标检测网络对复杂背景和低信噪比条件下的红外弱小目标具有较好的检测效果。
Infrared small target detection has been widely used for early warning, guidance, and in other fields of national defense. However, infrared small target occupies less pixels and lacks shape and texture features, which makes detection of infrared dim and small targets a challenging task. In this study, a simple and efficient real-time infrared small target detection network has been proposed. The detection network uses the adaptive receptive field fusion module to increase the contextual information around the targets. In addition, we used spatial attention mechanism to determine the relationship among different regions, which can strengthen the correlation and compactness among different regions. To improve the ability of network for locating the target and estimating the positive and negative samples, GIOU Loss and Focal Loss were used to design the loss function. The experiments were conducted on three infrared small target sequences and a single frame image set. The proposed network achieved 91.62%, 71.54%, 81.77% and 90.67% AP, respectively, and maintained high detection speed at approximately 165 FPS. The experimental results showed that the proposed infrared dim and small target detection network has good detection performance on the infrared small targets with complex background and low SNR.
张祥越 , 丁庆海 , 罗海波 , 等 . 基于改进LCM的红外弱小目标检测算法 [J]. 红外与激光工程 , 2017 , 46 ( 7 ): 0726002 .
ZHANG X Y , DING Q H , LUO H B , et al . Infrared dim target detection algorithm based on improved LCM [J]. Infrared and Laser Engineering , 2017 , 46 ( 7 ): 0726002 . (in Chinese)
王卫华 , 牛照东 , 陈曾平 . 基于时空域融合滤波的红外运动小目标检测算法 [J]. 红外与激光工程 , 2005 , 34 ( 6 ): 714 - 718 .
WANG W H , NIU ZH D , CHEN Z P . Temporal spatial fusion filtering algorithm for small infrared moving target detection [J]. Infrared and Laser Engineering , 2005 , 34 ( 6 ): 714 - 718 . (in Chinese)
DESHPANDE , SUYOG D , et al . Max-mean and max-median filters for detection of small targets [J]. Proceedings of SPIE , 1999 , 3809 : 7483 .
CHEN C L . PHILIP, LI H, WEI Y T, et al . A local contrast method for small infrared target detection [J]. IEEE Transactions on Geoscience and Remote Sensing , 2014 , 52 ( 1 ): 574 - 581 .
ZHANG L D , PENG Z M . Infrared small target detection based on partial sum of the tensor nuclear norm [J]. Remote Sensing . 2019 , 11 ( 4 ): 382 - 415 .
王刚 , 陈永光 , 杨锁昌 , 等 . 采用图像块对比特性的红外弱小目标检测 [J]. 光学 精密工程 , 2015 , 23 ( 5 ): 1424 - 1433 .
WANG G , CHEN Y G , YANG S C , et al . Detection of infrared dim small target based on image patch contrast [J]. Opt. Precision Eng. , 2015 , 23 ( 5 ): 1424 - 1433 . (in Chinese)
谷雨 , 刘俊 , 沈宏海 , 等 . 基于改进多尺度分形特征的红外图像弱小目标检测 [J]. 光学 精密工程 , 2020 , 28 ( 6 ): 1375 - 1386 .
GU Y , LIU J , SHEN H H , et al . Infrared dim-small target detection based on an improved multiscale fractal feature [J]. Opt. Precision Eng. , 2020 , 28 ( 6 ): 1375 - 1386 . (in Chinese)
张荣 , 李伟平 , 莫同 . 深度学习研究综述 [J]. 信息与控制 , 2018 , 47 ( 4 ): 385 - 397, 410 .
ZHANG R , LI W P , MO T . Review of deep learning [J]. Information and Control , 2018 , 47 ( 4 ): 385 - 397, 410 . (in Chinese)
GIRSHICK R . Fast R-CNN [C]. IEEE International Conference on Computer Vision (ICCV) , 2015 : 1440 - 1448 .
REN S Q , HE K M , GIRSHICK R , et al . Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2017 , 39 ( 6 ): 1137 - 1149 .
LIU W , ANGUELOV D , ERHAN D , et al . SSD: single shot multibox detector [C]. ECCV , 2016 : 21 - 37 .
REDMON J , DIVVALA S , GIRSHICK R , et al . You only look once: unified, real-time object detection [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , 2016 : 779 - 788 .
REDMON J , FARHADI A . YOLO 9000: better, faster, stronger [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , 2017 : 6517 - 6525 .
REDMON J , FARHADI A . 2018 . YOLOv3: an incremental improvement [EB/OL]. https://arxiv.org/abs/1804.02767 https://arxiv.org/abs/1804.02767 .
LIU S , HUANG D . Receptive field block net for accurate and fast object detection [C]. In Proceedings of the European Conference on Computer Vision , 2018 : 385 - 400 .
范丽丽 , 赵宏伟 , 赵浩宇 , 等 . 基于深度卷积神经网络的目标检测研究综述 [J]. 光学 精密工程 , 2020 , 28 ( 5 ): 1152 - 1164 .
FAN L L , ZHAO H W , ZHAO H Y , et al . Survey of target detection based on deep convolutional neural networks [J]. Opt. Precision Eng. , 2020 , 28 ( 5 ): 1152 - 1164 . (in Chinese)
杨其利 , 周炳红 , 郑伟 , 等 . 基于全卷积递归网络的弱小目标检测方法 [J]. 光学学报 , 2020 : 1 - 17 .
YANG Q L , ZHOU B H , ZHENG W , et al . Dim and small target detection based on fully convolutional recursive network [J]. Acta Optica Sinica , 2020 : 1 - 17 . (in Chinese)
陈铁明 , 付光远 , 李诗怡 , 等 . 基于YOLO v3的红外末制导典型目标检测 [J]. 激光与光电子学进展 , 2019 , 56 ( 16 ): 155 - 162 .
CHEN T M , FU G Y , LI S Y , et al . Typical Target Detection for Infrared Homing Guidance Based on YOLO v3 [J]. Laser Optoelectronics Progress , 2019 , 56 ( 16 ): 155 - 162 . (in Chinese)
LIN T Y , GOYAL P , GIRSHICK R , et al . Focal loss for dense object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2017 : 2999 - 3007 .
REZATOFIGHI H , TSOI N , GWAK J Y , et al . Savarese Silvio . Generalized intersection over union : a metric and a loss for bounding box regression . 2019 . https://arxiv.org/abs/1902.09630 https://arxiv.org/abs/1902.09630 .
HE K M , ZHANG X Y , REN S Q , et al . Deep residual learning for image recognition [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , 2016 : 770 - 778 .
LIN T Y , DOLLÁR P , GIRSHICK R , et al . Feature pyramid networks for object detection [J]. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 2017 : 2117 - 2125 .
ZHOU X , WANG D , PHILIPP K . Objects as points [EB/OL]. Available : https://arxiv.org/abs/1904.07850 https://arxiv.org/abs/1904.07850 .
HU P Y , RAMANAN D . ( 2017 ). “ Finding Tiny Faces .” [EB/OL]. Available : https://arxiv.org/abs/1612.04402 https://arxiv.org/abs/1612.04402
LI Y H , CHEN Y T , WANG N Y , et al . Scale-aware trident networks for object detection [C]. 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , 2019 .
ZHANG H , GOODFELLOW I , METAXAS D , et al . Self-attention generative adversarial networks [EB/OL]. Available : https://arxiv.org/abs/1805.08318 https://arxiv.org/abs/1805.08318 .
LOSHCHILOV I , HUTTER F . SGDR: stochastic gradient descent with warm restarts [EB/OL]. 2016 . https://arxiv.org/abs/1608.03983 https://arxiv.org/abs/1608.03983 .
回丙伟 , 宋志勇 , 范红旗 , 等 . 红外序列图像中弱小飞机目标检测跟踪数据集 [J/OL]. 中国科学数据 , 2019 . ( 2019-11-22 ).
TIAN B W , SONG ZH Y , FAN H Q , et al . A dataset for dim-small target detection and tracking of aircraft in infrared image sequences [J/OL]. China Scientific Data , 2019 . ( 2019-11-22 ). (in Chinese)
0
Views
1235
下载量
18
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution