浏览全部资源
扫码关注微信
1.中国科学院 国家空间科学中心, 北京100190
2.中国科学院大学, 北京 100190
3.国家电网有限公司大数据中心, 北京 100031
Received:29 June 2020,
Revised:17 August 2020,
Published:15 April 2021
移动端阅览
郑铁,薛长斌,宋金伟.利用格型递归最小二乘滤波器组的高光谱图像压缩[J].光学精密工程,2021,29(04):896-905.
ZHENG Tie,XUE Chang-bin,SONG Jin-wei.Lossless compression of hyperspectral images using recursive least square lattice filter group[J].Optics and Precision Engineering,2021,29(04):896-905.
郑铁,薛长斌,宋金伟.利用格型递归最小二乘滤波器组的高光谱图像压缩[J].光学精密工程,2021,29(04):896-905. DOI: 10.37188/OPE.20212904.0896.
ZHENG Tie,XUE Chang-bin,SONG Jin-wei.Lossless compression of hyperspectral images using recursive least square lattice filter group[J].Optics and Precision Engineering,2021,29(04):896-905. DOI: 10.37188/OPE.20212904.0896.
自适应递归最小二乘滤波器具有预测准确、收敛速度快的特点,该滤波器被多种高光谱图像无损压缩方案作为重要组成部分。然而传统递归最小二乘滤波器无法快速找到每个谱带的最优预测长度,其压缩方案的性能有待提升。针对该问题,本文提出基于格型递归最小二乘滤波器组的高光谱图像压缩方案。首先,该方案使用单边高斯预测器对待测像素点做谱带内预测,去除图像的空间相关性。其次,采用格型滤波器组筛选出每个谱带的最优滤波器,获得预测误差。并根据格型滤波器组链式序列更新的特点,简化最优滤波器的筛选过程,大幅度降低计算复杂度。最后对预测误差做算术编码。以AVIRIS 2006高光谱图像为测试数据集,本文算法对16位校准图像、16位未校准图像的平均压缩结果分别为3.34 bits/pixel和5.61 bits/pixel。该算法在获得良好压缩结果的情况下,计算时间低于同类别的其余算法。
The lossless compression algorithms for hyperspectral images based on the recursive least square filter have accurate prediction and fast convergence. However, the traditional compression algorithm is incapable of quickly identifying the optimal prediction length of each band, and the performance of the algorithm needs to be improved. In this paper, we propose a hyperspectral image compression algorithm based on the recursive least square lattice filter group. Considering the spatial correlation of the hyperspectral image, the proposed scheme first uses a single-sided Gaussian predictor for inner-band prediction. The lattice filter group is then used to calculate the optimal filter for each spectral band to obtain the prediction error. Further, the screening process of the optimal filters are simplified according to the characteristics of the chain sequence update of the lattice filter group; this significantly reduces the computational complexity. Finally, the arithmetic code is used to encode the residual data. Experiments on the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 2006 hyperspectral image datasets reveal that the average compression results of the algorithm for 16-bit calibrated and uncalibrated images are 3.34 bits/pixel and 5.61 bits/pixel, respectively. The proposed algorithm therefore shows a competitive performance with regard to compression and requires less computation time compared to other outstanding algorithms.
陈善学 , 张燕琪 . 基于自适应波段聚类主成分分析和反向传播神经网络的高光谱图像压缩 [J]. 电子与信息学报 , 2018 , 40 ( 10 ): 2478 - 2483 .
CHEN SH X , ZHANG Y Q . Hyperspectral image compression based on adaptive band clustering principal component analysis and back propagation neural network [J]. Journal of Electronics & Information Technology , 2018 , 40 ( 10 ): 2478 - 2483 . (in Chinese)
张宁 , 冯书谊 , 濮建福 , 等 . 多光谱遥感图像CCSDS动态码率控制近无损压缩 [J]. 光学 精密工程 , 2015 , 23 ( 6 ): 1783 - 1790 .
ZHANG N , FENG SH Y , PU J F , et al . Dynamic rate control for CCSDS nearly lossless compression of multispectral remote image [J]. Opt. Precision Eng. , 2015 , 23 ( 6 ): 1783 - 1790 . (in Chinese)
宋金伟 , 张忠伟 , 陈晓敏 . 利用线性预测与查表法的高光谱图像压缩 [J]. 光学 精密工程 , 2013 , 21 ( 8 ): 2201 - 2208 .
SONG J W , ZHANG ZJ W , CHEN X M . Hyperspectral imagery compression via linear prediction and lookup tables [J]. Opt. Precision Eng. , 2013 , 21 ( 8 ): 2201 - 2208 . (in Chinese)
XUE J , ZHAO Y , LIAO W , et al . Hyper-Laplacian regularized nonlocal low-rank matrix recovery for hyperspectral image compressive sensing reconstruction [J]. Information Sciences , 2019 , 501 : 406 - 420 .
KONG W , WU J , HU Z , et al . Lossless compression codec of aurora spectral data using hybrid spatial-spectral decorrelation with outlier recognition [J]. Journal of Visual Communication and Image Representation , 2019 , 62 : 174 - 181 .
NAGENDRAN R , VASUKI A . Hyperspectral image compression using hybrid transform with different wavelet-based transform coding [J]. International Journal of Wavelets , Multiresolution and Information Processing, 2019 , 18 ( 4 ).
LUO J , WU J , ZHAO S , et al . Lossless compression for hyperspectral image using deep recurrent neural networks [J]. International Journal of Machine Learning and Cybernetics , 2019 , 10 ( 10 ): 2619 - 2629 .
孙蕾 , 罗建书 , 谷德峰 . 基于谱间预测和码流预分配的高光谱图像压缩算法 [J]. 光学 精密工程 , 2008 ( 4 ): 752 - 757 .
SUN L , LUO J SH , GU D F . Hyperspectral image compression algorithm based on prediction between bands and rate pre-allocation [J]. Opt. Precision Eng. , 2008 ( 4 ): 752 - 757 . (in Chinese)
LI R , PAN Z , WANG Y . The linear prediction vector quantization for hyperspectral image compression [J]. Multimedia Tools and Applications , 2018 , 78 ( 9 ): 11701 - 11718 .
BAJPAI S , KIDWAI N R , SINGH H V , et al . Low memory block tree coding for hyperspectral images [J]. Multimedia Tools and Applications , 2019 , 78 ( 19 ): 27193 - 27209 .
ALVAREZ-CORTES S , SERRA-SAGRISTA J , BARTRINA-RAPESTA J , et al . Regression wavelet analysis for near-lossless remote sensing data compression [J]. IEEE Transactions on Geoscience and Remote Sensing , 2020 , 58 ( 2 ): 790 - 798 .
RYAN M J , AJ F . The lossless compression of AVIRIS images by vector quantization [J]. IEEE Transactions on Geoscience & Remote Sensing , 1997 , 35 : 546 - 550 .
高放 , 孙长建 , 邵庆龙 , 等 . 基于K-均值聚类和传统递归最小二乘法的高光谱图像无损压缩 [J]. 电子与信息学报 , 2016 , 38 ( 11 ): 2709 - 2714 .
GAO F , SUN CH J , SHAO Q L , et al . Lossless compression of hyperspectral images using k-means clustering and conventional recursive least-squares predictor [J]. Opt. Precision Eng. , 2016 , 38 ( 11 ): 2709 - 2714 . (in Chinese)
MIELIKAINEN J . Lossless compression of hyperspectral images using lookup tables [J]. IEEE Signal Processing Letters , 2006 , 13 ( 3 ): 157 - 160 .
BORMIN H , SRIRAJA Y . Lossless compression of hyperspectral imagery via lookup tables with predictor selection [J]. Proceedings of the SPIE-The International Society for Optical Engineering , 2006 , 6365 .
MIELIKAINEN J , TOIVANEN P . Clustered DPCM for the lossless compression of hyperspectral images [J]. IEEE Transactions on Geoscience and Remote Sensing , 2003 , 41 ( 12 ): 2943 - 2946 .
MIELIKAINEN J , HUANG B . Lossless compression of hyperspectral images using clustered linear prediction with adaptive prediction length [J]. IEEE Geoscience and Remote Sensing Letters , 2012 , 9 ( 6 ): 1118 - 1121 .
CCSDS . Lossless Multispectral & Hyperspectral Image Compression Recommended Standard [M]. USA : CCSDS , 2012 .
CHENG-CHEN L , YIN-TSUNG H . An efficient lossless compression scheme for hyperspectral images using two-stage prediction [J]. IEEE Geoscience and Remote Sensing Letters , 2010 , 7 ( 3 ).
SONG J , ZHANG Z , CHEN X . Lossless compression of hyperspectral imagery via RLS filter [J]. Electronics Letters , 2013 , 49 ( 16 ): 992 - 994 .
GAO F , GUO S . Lossless compression of hyperspectral images using conventional recursive least-squares predictor with adaptive prediction bands [J]. Journal of Applied Remote Sensing , 2016 , 10 ( 1 ).
SONG J , ZHOU L , DENG C , et al . Lossless compression of hyperspectral imagery using a fast adaptive-length-prediction RLS filter [J]. Remote Sensing Letters , 2019 , 10 ( 4 ): 401 - 410 .
0
Views
1111
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution