浏览全部资源
扫码关注微信
中国石油大学(华东) 控制科学与工程学院,山东 青岛 266580
Received:15 December 2020,
Revised:25 January 2021,
Published:15 May 2021
移动端阅览
李国林,焦月,马坤等.应用经验模态分解的近红外CO2浓度反演系统[J].光学精密工程,2021,29(05):940-950.
LI Guo-lin,JIAO Yue,MA Kun,et al.Application of near-infrared CO2 concentration inversion system based on empirical modal decomposition[J].Optics and Precision Engineering,2021,29(05):940-950.
李国林,焦月,马坤等.应用经验模态分解的近红外CO2浓度反演系统[J].光学精密工程,2021,29(05):940-950. DOI: 10.37188/OPE.20212905.0940.
LI Guo-lin,JIAO Yue,MA Kun,et al.Application of near-infrared CO2 concentration inversion system based on empirical modal decomposition[J].Optics and Precision Engineering,2021,29(05):940-950. DOI: 10.37188/OPE.20212905.0940.
为了监测CO
2
的含量,选取CO
2
气体在1 580 nm附近的近红外光谱吸收谱线,使用中心波长为1 580 nm的分布反馈式激光器和光程为20 m的Herriott气室,基于可调谐二极管激光吸收光谱技术开展0.03%~0.08%,2%~20%浓度的CO
2
检测实验。用数据采集卡采集原始二次谐波信号(raw2
f
信号),并将经验模态分解作为预处理算法嵌入到LabVIEW数据采集分析平台中,得到预处理后的2
f
信号后通过粒子群寻优的核极限学习机(Particle Swarm Optimization-Kernal Extreme Learning Machine, PSO-KELM)算法反演浓度。实验表明,与raw2
f
信号相比,2
f
信号的信噪比从6.75 dB提高到12.59 dB。反演结果与最小二乘法、偏最小二乘、BP神经网络和极限学习机做比较,PSO-KELM算法提高了CO
2
气体的检测准确度,均方根误差最小,线性相关系数最接近1。经1.5 h的稳定性测试,分析其Allan方差,当积分时间为16 s时,其理论检测极限可达到
<math id="M1"><mn mathvariant="normal">44.8</mn><mo>×</mo><msup><mrow><mn mathvariant="normal">10</mn></mrow><mrow><mo>-</mo><mn mathvariant="normal">6</mn></mrow></msup></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=16850654&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=16850652&type=
15.83266735
2.62466669
。本LabVIEW数据采集分析平台满足CO
2
检测准确度高、稳定性好的要求。
In order to monitor the content of CO
2
near-infrared spectral absorption lines of CO
2
gas near 1 580 nm were selected in this study,and a distributed feedback(DFB)laser at 1 580 nm and Herriott gas chamber at 20 m were recommended. Based on tunable diode laser absorption spectroscopy (TDLAS), CO
2
detection experiments for 0.03%~0.08% and 2%~20% concentrations were carried out. Raw 2
f
signals were collected with a data acquisition card, and empirical mode decomposition was embedded into LabVIEW data acquisition and analysis platform as a pre-processing algorithm. After obtaining the pre-processed 2
f
signals, the concentration was inverted using particle swarm optimization-kernel extreme learning machine (PSO-KELM) algorithm. Experimental results indicate that the signal-to-noise ratio of 2
f
signals increases from 6.75 dB to 12.59 dB compared with raw 2
f
signals. Compared with the results of the least square method, partial least square method, back proportional neural network (BP neural network), and extreme learning machine, the inversion results show that the Pso-Kelm algorithm improves the detection accuracy of CO
2
gas, the root mean square error is the smallest, and the linear correlation coefficient is the closest to 1. After 1.5 h of stability test and analysis of its Allan variance, when the integral time is 16 s, its theoretical detection limit
<math id="M2"><mn mathvariant="normal">44.8</mn><mo>×</mo><msup><mrow><mn mathvariant="normal">10</mn></mrow><mrow><mo>-</mo><mn mathvariant="normal">6</mn></mrow></msup></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=16850660&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=16850658&type=
17.52599907
3.04800010
can reach .This LabVIEW data acquisition and analysis platform meets the requirements of high accuracy and good stability of CO
2
detection.
MUSTAFA A , LOUGOU B G , SHUAI Y , et al . Current technology development for CO 2 utilization into solar fuels and chemicals: a review [J]. Journal of Energy Chemistry , 2020 , 49 : 96 - 123 .
KATHRYN M , KIRSTYN B , KYLE R , et al . Does behavioral inhibition affect the breathing response to elevated co 2 implications for a respiratory stress response [J]. The FASEB Journal , 2018 , 32 ( S1 ): 894 .6.
季文海 , 吕晓翠 , 胡文泽 , 等 . TDLAS技术在烯烃生产过程中的多组分检测应用 [J]. 光学 精密工程 , 2018 , 26 ( 8 ): 1837 - 1845 .
JI W H , LÜ X C , HU W Z , et al . Application of TDLAS technology to multicomponent detection in olefin production process [J]. Opt. Precision Eng. , 2018 , 26 ( 8 ): 1837 - 1845 . (in Chinese)
SCHWANDT C , KUMAR R V , HILLS M P . Solid state electrochemical gas sensor for the quantitative determination of carbon dioxide [J]. Sensors and Actuators B: Chemical , 2018 , 265 : 27 - 34 .
张怀林 . 基于波长调制光谱的呼吸气体检测技术研究 [D]. 南昌 : 南昌航空大学 , 2019 .
ZHANG H L . Research on Breath Gas Detection Based on Wavelength Modulation Spectroscopy [D]. Nanchang : Nanchang Hangkong University , 2019 . (in Chinese)
VINCENTT A , URASINSKA-WOJCIK B , GARDNER J W . Development of a low-cost NDIR system for ppm detection of carbon dioxide in exhaled breath analysis [J]. Procedia Engineering , 2015 , 120 : 388 - 391 .
XIONG B , DU Z H , LIU L , et al . Hollow-waveguide-based carbon dioxide sensor for capnography [J]. Chinese Optics Letters , 2015 , 13 ( 11 ): 111201 .
陶宇 , 牛思瑶 , 冯文林 . 磁流体包覆无芯-三芯-无芯光纤结构的磁场传感器 [J]. 光学 精密工程 , 2020 , 28 ( 8 ): 1700 - 1706 .
TAO Y , NIU S Y , FENG W L . Magnetic field sensor based on magnetic fluid coated no-core-three-core-no-core fiber structure [J]. Opt. Precision Eng. , 2020 , 28 ( 8 ): 1700 - 1706 . (in Chinese)
LI G L , DONG E T , JI W H . A near-infrared trace CO 2 detection system based on an 1 580 nm tunable diode laser using a cascaded integrator comb (CIC) filter-assisted wavelength modulation technique and a digital lock-in amplifier [J]. Frontiers in Physics , 2019 , 7 : 199 .
聂伟 , 阚瑞峰 , 杨晨光 , 等 . 可调谐二极管激光吸收光谱技术的应用研究进展 [J]. 中国激光 , 2018 , 45 ( 9 ): 0911001 .
NIE W , KAN R F , YANG CH G , et al . Research progress on the application of tunable diode laser absorption spectroscopy [J]. Chinese Journal of Lasers , 2018 , 45 ( 9 ): 0911001 . (in Chinese)
贾良权 , 祁亨年 , 胡文军 , 等 . 种子呼吸CO 2 浓度检测系统 [J]. 光学 精密工程 , 2019 , 27 ( 6 ): 1397 - 1404 .
JIA L Q , QI H N , HU W J , et al . CO 2 concentration detection system for seed respiration [J]. Opt. Precision Eng. , 2019 , 27 ( 6 ): 1397 - 1404 . (in Chinese)
袁志国 , 马修真 , 刘晓楠 , 等 . 利用可调谐激光吸收光谱技术的柴油机排放温度测试研究 [J]. 中国光学 , 2020 , 13 ( 2 ): 281 - 289 .
YUAN ZH G , MA X ZH , LIU X N , et al . Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology [J]. Chinese Optics , 2020 , 13 ( 2 ): 281 - 289 . (in Chinese)
MA Y F , HU Y Q , QIAO S D , et al . Trace gas sensing based on multi-quartz-enhanced photothermal spectroscopy [J]. Photoacoustics , 2020 , 20 : 100206 .
LI Y , WANG R Z , TITTEL F K , et al . Sensitive methane detection based on quartz-enhanced photoacoustic spectroscopy with a high-power diode laser and wavelet filtering [J]. Optics and Lasers in Engineering , 2020 , 132 : 106155 .
LI G L , MA K , JIAO Y , et al . Performance enhancement of DFBL based near-infrared CH 4 telemetry system using a focus tunable lens [J]. Microwave and Optical Technology Letters , 2021 , 63 ( 4 ): 1147 - 1151 .
CHEN Y G . Prediction algorithm of PM 2.5 mass concentration based on adaptive BP neural network [J]. Computing , 2018 , 100 ( 8 ): 825 - 838 .
WANG S X , ZHANG N , WU L , et al . Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method [J]. Renewable Energy , 2016 , 94 : 629 - 636 .
SUN W , XU Y F . Using a back propagation neural network based on improved particle swarm optimization to study the influential factors of carbon dioxide emissions in Hebei Province, China [J]. Journal of Cleaner Production , 2016 , 112 : 1282 - 1291 .
YANG T T , MA K F , LV Y , et al . Real-time dynamic prediction model of NO x emission of coal-fired boilers under variable load conditions [J]. Fuel , 2020 , 274 : 117811 .
LI X L , LUO A R , LI J G , et al . Air pollutant concentration forecast based on support vector regression and quantum-behaved particle swarm optimization [J]. Environmental Modeling & Assessment , 2019 , 24 ( 2 ): 205 - 222 .
SU X Q , AN J L , ZHANG Y X , et al . Prediction of ozone hourly concentrations by support vector machine and kernel extreme learning machine using wavelet transformation and partial least squares methods [J]. Atmospheric Pollution Research , 2020 , 11 ( 6 ): 51 - 60 .
HO C H , CHANG P T , HUNG K C , et al . Developing intuitionistic fuzzy seasonality regression with particle swarm optimization for air pollution forecasting [J]. Industrial Management & Data Systems , 2019 , 119 ( 3 ): 561 - 577 .
FU W L , WANG K , ZHOU J Z , et al . A hybrid approach for multi-step wind speed forecasting based on multi-scale dominant ingredient chaotic analysis, KELM and synchronous optimization strategy [J]. Sustainability , 2019 , 11 ( 6 ): 1804 .
徐睿 , 梁循 , 齐金山 , 等 . 极限学习机前沿进展与趋势 [J]. 计算机学报 , 2019 , 42 ( 7 ): 1640 - 1670 .
XU R , LIANG X , QI J SH , et al . Advances and trends in extreme learning machine [J]. Chinese Journal of Computers , 2019 , 42 ( 7 ): 1640 - 1670 . (in Chinese)
LU H J , DU B J , LIU J Y , et al . A kernel extreme learning machine algorithm based on improved particle swam optimization [J]. Memetic Computing , 2017 , 9 ( 2 ): 121 - 128 .
张坤华 , 谭志恒 , 李斌 . 结合粒子群优化和综合评价的脉冲耦合神经网络图像自动分割 [J]. 光学 精密工程 , 2018 , 26 ( 4 ): 962 - 970 .
ZHANG K H , TAN ZH H , LI B . Automated image segmentation based on pulse coupled neural network with partide swarm optimization and comprehensive evaluation [J]. Opt. Precision Eng. , 2018 , 26 ( 4 ): 962 - 970 . (in Chinese)
郭心骞 , 邱选兵 , 季文海 , 等 . 基于经验模态分解的可调谐半导体激光吸收光谱中干涉条纹的抑制 [J]. 激光与光电子学进展 , 2018 , 55 ( 11 ): 463 - 469 .
GUO X Q , QIU X B , JI W H , et al . Minimization of interference fringes in tunable diode laser absorption spectrum based on empirical mode decomposition [J]. Laser & Optoelectronics Progress , 2018 , 55 ( 11 ): 463 - 469 . (in Chinese)
李晓莉 , 李成伟 . 改进的自适应噪声总体集合经验模态分解在光谱信号去噪中的应用 [J]. 光学 精密工程 , 2016 , 24 ( 7 ): 1754 - 1762 .
LI X L , LI CH W . Application of improved complete ensemble empirical mode decomposition with adaptive noise in spectral signal denoising [J]. Opt. Precision Eng. , 2016 , 24 ( 7 ): 1754 - 1762 . (in Chinese)
0
Views
283
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution