浏览全部资源
扫码关注微信
1.合肥工业大学 仪器科学与光电工程学院,安徽 合肥 230009
2.重庆理工大学 机械工程学院, 重庆 400054
3.长江大学 机械工程学院, 湖北 荆州 434023
4.哈尔滨工业大学(深圳), 广东 深圳 518055
E-mail: miaoem@163.com
Received:09 December 2020,
Revised:20 January 2021,
Published:15 May 2021
移动端阅览
刘昀晟,苗恩铭,张明德等.数控机床稳健性温度敏感点的选择[J].光学精密工程,2021,29(05):1072-1083.
LIU Yun-sheng,MIAO En-ming,ZHANG Ming-de,et al.Selection of robust temperature-sensitive points for CNC machine tools[J].Optics and Precision Engineering,2021,29(05):1072-1083.
刘昀晟,苗恩铭,张明德等.数控机床稳健性温度敏感点的选择[J].光学精密工程,2021,29(05):1072-1083. DOI: 10.37188/OPE.20212905.1072.
LIU Yun-sheng,MIAO En-ming,ZHANG Ming-de,et al.Selection of robust temperature-sensitive points for CNC machine tools[J].Optics and Precision Engineering,2021,29(05):1072-1083. DOI: 10.37188/OPE.20212905.1072.
为解决温度敏感点变动性带来的模型精度稳健性缺陷,研究了稳健性温度敏感点选择方法。从温度敏感点变动性的机理出发,解释了温度敏感点变动性产生的原因,并在此基础上提出了一种稳健的温度敏感点选择方法,通过全年的实验数据验证了这一方法的有效性。分别使用稳健性温度敏感点选择方法和非稳健性选择方法建立了两个热误差补偿模型,并对它进行了精度分析和比对。分析发现,因未考虑温度敏感点变动代入错误温度敏感点建立的模型会造成模型拟合精度、预测精度和长期预测稳健性的大幅损失。基于机床稳健性温度敏感点选择方法的热误差补偿模型不仅可以保证模型精度的稳健性满足工况需求,而且避免了带入错误温度敏感点建模,实现用5个温度传感器就将模型全年的预测精度均值控制为5.18 μm,全年的预测精度的波动性控制为2.57 μm。机床稳健性温度敏感点选择方法具有重大的理论价值和工程应用价值。
To eliminate the defects in the model accuracy robustness due to the variability of temperature-sensitive points, a method for selection of robust temperature-sensitive points was investigated herein. The mechanism of temperature-sensitive point variability was explored, and the causes thereof were explained. On this basis, a method for selecting robust temperature-sensitive points was proposed, the validity of which was verified via experimental data obtained throughout the year. Two thermal error compensation models were established via a robust temperature-sensitive point selection method and non-robust selection method, respectively. In addition, their accuracies were analyzed and compared. The model built by substituting the wrong temperature-sensitive points without considering their variability will cause a significant degradation of fitting accuracy, prediction accuracy, and long-term prediction robustness. The thermal error compensation model based on the selection of robust temperature-sensitive points can not only improve the model accuracy robustness so that it meets working condition requirements, but also avoid the introduction of wrong temperature-sensitive point modeling. Notably, the annual average prediction accuracy of the model can be controlled within 5.18 μm with five temperature sensors, while the fluctuation of the annual prediction accuracy can be controlled within 2.57 μm. Therefore, this method for selection of robust temperature-sensitive points for CNC machine tools has significant theoretical value and engineering application potential.
VOLK W , GROCHE P , BROSIUS A , et al . Models and modelling for process limits in metal forming [J]. CIRP Annals , 2019 , 68 ( 2 ): 775 - 798 .
BRYAN J . International status of thermal error research (1990) [J]. CIRP Annals , 1990 , 39 ( 2 ): 645 - 656 .
邓小雷 , 林欢 , 王建臣 , 等 . 机床主轴热设计研究综述 [J]. 光学 精密工程 , 2018 , 26 ( 6 ): 1415 - 1429 .
DENG X L , LIN H , WANG J CH , et al . Review on thermal design of machine tool spindles [J]. Opt. Precision Eng. , 2018 , 26 ( 6 ): 1415 - 1429 . (in Chinese)
邓小雷 , 戴温克 , 周翎飞 , 等 . 数控机床主轴-立柱系统热态特性分析与测试 [J]. 光学 精密工程 , 2020 , 28 ( 3 ): 601 - 609 .
DENG X L , DAI W K , ZHOU L F , et al . Thermal characteristics analysis and test of spindle-column system for CNC machine tool [J]. Opt. Precision Eng. , 2020 , 28 ( 3 ): 601 - 609 . (in Chinese)
LI X G , YANG Y , ZOU Z , et al . Study on the effect of force-thermal coupling error on the gear hobbing accuracy and its visualization [J]. The International Journal of Advanced Manufacturing Technology , 2019 , 102 ( 1 / 2 / 3 / 4 ): 583 - 594 .
GE Z J , DING X H . Thermal error control method based on thermal deformation balance principle for the precision parts of machine tools [J]. The International Journal of Advanced Manufacturing Technology , 2018 , 97 ( 1 / 2 / 3 / 4 ): 1253 - 1268 .
GRAMA S N , MATHUR A , BADHE A N . A model-based cooling strategy for motorized spindle to reduce thermal errors [J]. International Journal of Machine Tools and Manufacture , 2018 , 132 : 3 - 16 .
王海同 , 李铁民 , 王立平 , 等 . 机床热误差建模研究综述 [J]. 机械工程学报 , 2015 , 51 ( 9 ): 119 - 128 .
WANG H T , LI T M , WANG L P , et al . Review on thermal error modeling of machine tools [J]. Journal of Mechanical Engineering , 2015 , 51 ( 9 ): 119 - 128 . (in Chinese)
苗恩铭 , 刘辉 , 魏新园 . 数控机床热稳健性精度理论及应用 [M]. 重庆 : 重庆大学出版社 , 2019 .
MIAO E M , LIU H , WEI X Y . Thermal Robustness Accuracy Theory and Application of CNC Machine Tools [M]. Chongqing : Chongqing University Press , 2019 . (in Chinese)
MIAO E M , LIU Y , LIU H , et al . Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool [J]. International Journal of Machine Tools and Manufacture , 2015 , 97 : 50 - 59 .
LIU Y S , MIAO E M , LIU H , et al . Robust machine tool thermal error compensation modelling based on temperature-sensitive interval segmentation modelling technology [J]. The International Journal of Advanced Manufacturing Technology , 2020 , 106 ( 1/2 ): 655 - 669 .
LIU H , MIAO E M , WEI X Y , et al . Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm [J]. International Journal of Machine Tools and Manufacture , 2017 , 113 : 35 - 48 .
MIAO E M , GONG Y Y , NIU P C , et al . Robustness of thermal error compensation modeling models of CNC machine tools [J]. The International Journal of Advanced Manufacturing Technology , 2013 , 69 ( 9 / 10 / 11 / 12 ): 2593 - 2603 .
MIAO E M , GONG Y Y , DANG L C , et al . Temperature-sensitive point selection of thermal error model of CNC machining center [J]. The International Journal of Advanced Manufacturing Technology , 2014 , 74 ( 5 / 6 / 7 / 8 ): 681 - 691 .
杨建国 , 邓卫国 , 任永强 , 等 . 机床热补偿中温度变量分组优化建模 [J]. 中国机械工程 , 2004 , 15 ( 6 ): 478 - 481
YANG J G , DENG W G , REN Y Q , et al . Grouping optimization modeling by selection of temperature variables for the thermal error compensation on machine tools [J]. China Mechanical Engineering , 2004 , 15 ( 6 ): 478 - 481 . (in Chinese)
张恩忠 , 赵继 , 冀世军 , 等 . 精密加工实验台热误差建模与补偿方法的对比分析 [J]. 光学 精密工程 , 2016 , 24 ( 10 s): 520 - 526 .
ZHANG E ZH , ZHAO J , JI SH J , et al . Contrastive analysis of modeling and compensation method of thermal error of precision machining experiment table [J]. Opt. Precision Eng. , 2016 , 24 ( 10 s): 520 - 526 . (in Chinese)
YANG J , SHI H , FENG B , et al . Thermal error modeling and compensation for a high-speed motorized spindle [J]. The International Journal of Advanced Manufacturing Technology , 2015 , 77 ( 5 / 6 / 7 / 8 ): 1005 - 1017 .
ABDULSHAHED A M , LONGSTAFF A P , FLETCHER S , et al . Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera [J]. Applied Mathematical Modelling , 2015 , 39 ( 7 ): 1837 - 1852 .
WEI X , GAO F , LI Y , et al . Study on optimal independent variables for the thermal error model of CNC machine tools [J]. The International Journal of Advanced Manufacturing Technology , 2018 , 98 ( 1 / 2 / 3 / 4 ): 657 - 669 .
KRULEWICH D A . Temperature integration model and measurement point selection for thermally induced machine tool errors [J]. Mechatronics , 1998 , 8 ( 4 ): 395 - 412 .
ATTIA M H , FRASER S . A generalized modelling methodology for optimized real-time compensation of thermal deformation of machine tools and CMM structures [J]. International Journal of Machine Tools and Manufacture , 1999 , 39 ( 6 ): 1001 - 1016 .
ZHANG T , YE W H , SHAN Y C . Application of sliced inverse regression with fuzzy clustering for thermal error modeling of CNC machine tool [J]. The International Journal of Advanced Manufacturing Technology , 2016 , 85 ( 9 / 10 / 11 / 12 ): 2761 - 2771 .
苗恩铭 , 吕玄玄 , 苗继超 , 等 . 数控机床热误差补偿最佳转速选择 [J]. 光学 精密工程 , 2015 , 23 ( 11 ): 3176 - 3182 .
MIAO EN M , LÜ X X , MIAO J CH , et al . Selection of optimum spindle speed to thermal error compensation of machine tools [J]. Opt. Precision Eng. , 2015 , 23 ( 11 ): 3176 - 3182 . (in Chinese)
ISO 230-3 , Test Code for Machine Tools Part 3: Determination of Thermal Effects [S]. Switzerland : ISO Copyright Office , 2007 .
LO C H , YUAN J X , NI J . Optimal temperature variable selection by grouping approach for thermal error modeling and compensation [J]. International Journal of Machine Tools and Manufacture , 1999 , 39 ( 9 ): 1383 - 1396 .
苗恩铭 , 刘义 , 董云飞 , 等 . 数控机床热误差时间序列模型预测稳健性的提升 [J]. 光学 精密工程 , 2016 , 24 ( 10 ): 2480 - 2489 .
MIAO E M , LIU Y , DONG Y F , et al . Improvement of forecasting robustness of time series model for thermal error on CNC machine tool [J]. Opt. Precision Eng. , 2016 , 24 ( 10 ): 2480 - 2489 . (in Chinese)
0
Views
700
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution