浏览全部资源
扫码关注微信
1.贵阳学院 食品与制药工程学院,贵州 贵阳 550005
2.贵阳学院 农产品无损检测工程研究中心,贵州 贵阳 550005
Received:13 August 2020,
Revised:08 October 2020,
Published:15 May 2021
移动端阅览
尚静,孟庆龙,黄人帅等.光纤光谱技术对猕猴桃品质及成熟度的无损检测[J].光学精密工程,2021,29(05):1190-1198.
SHANG Jing,MENG Qing-long,HUANG Ren-shuai,et al.Nondestructive detection for kiwifruit quality and maturity by optical fiber spectroscopy technology[J].Optics and Precision Engineering,2021,29(05):1190-1198.
尚静,孟庆龙,黄人帅等.光纤光谱技术对猕猴桃品质及成熟度的无损检测[J].光学精密工程,2021,29(05):1190-1198. DOI: 10.37188/OPE.20212905.1190.
SHANG Jing,MENG Qing-long,HUANG Ren-shuai,et al.Nondestructive detection for kiwifruit quality and maturity by optical fiber spectroscopy technology[J].Optics and Precision Engineering,2021,29(05):1190-1198. DOI: 10.37188/OPE.20212905.1190.
猕猴桃可溶性固形物含量(SSC)和硬度是评价其品质的关键参数,同时也是判别其成熟度的重要指标。为探究基于光纤光谱技术预测猕猴桃SSC、硬度和成熟度的可行性并寻求最佳预测模型。首先,采用光纤光谱(200~1 000 nm)采集系统获取不同成熟期“贵长”猕猴桃的反射光谱,并测定SSC和硬度的参考值。接着,基于全光谱和参考值构建偏最小二乘回归(PLSR)和主成分回归(PCR)预测模型。然后,应用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)选取特征波长,构建简化的多元线性回归(MLR)和误差反向传播(BP)网络预测模型。最后,通过偏最小二乘判别分析(PLS-DA)和简化的K近邻(SKNN)算法,构建预测猕猴桃成熟度检测模型。结果表明:CARS-BP模型对SSC的预测性能最优,其预测集决定系数
<math id="M1"><msubsup><mrow><mi>R</mi></mrow><mrow><mi>P</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msubsup></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=16848674&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=16848673&type=
3.72533321
3.38666677
=0.90,预测集均方根误差(RMSEP)和剩余预测偏差(RPD)分别为0.64和3.22;CARS-MLR对硬度的预测性能相对最优,其
<math id="M2"><msubsup><mrow><mi>R</mi></mrow><mrow><mi>P</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msubsup></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=16848674&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=16848673&type=
3.72533321
3.38666677
=0.83,RMSEP和RPD分别为1.67和2.47;PLS-DA模型对猕猴桃成熟度的检测性能最优,其正确识别率高达100%。该研究为水果品质和成熟度的无损检测提供重要指导。
The soluble solids content (SSC) and firmness of kiwifruit are two important indices for evaluating its quality and distinguishing its maturity. In this paper, we explore the feasibility of predicting the SSC, firmness, and maturity of kiwifruit using optical fiber spectroscopy technology and of finding the best prediction model. First, an optical fiber spectroscopy (200~1 000 nm) acquisition system was used to collect the reflectance spectra of the different maturity stages of ‘Guichang’ kiwifruit. Simultaneously, the reference values of the SSC and firmness were measured. Two methods, namely, partial least-squares regression (PLSR) and principal components regression (PCR), were employed to establish the models on the basis of the full spectra and the reference values. Then, multiple linear regression (MLR) and an error back-propagation (BP) network were applied to build simplified models on the basis of the selected characteristic variables from the full wavelengths using the methods of successive projection algorithm (SPA) and competitive adaptive reweighted sampling (CARS). Finally, partial least-squares discrimination analysis (PLS-DA) and a simplified K nearest neighbor (SKNN) algorithm were applied to build models for predicting the maturity of kiwifruit. The results showed that, for the SSC, the CARS-BP model had the best prediction ability (
<math id="M3"><msubsup><mrow><mi>R</mi></mrow><mrow><mi>P</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msubsup></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=16848678&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=16848677&type=
3.72533321
3.38666677
=0.90, RMSEP=0.64, RPD=3.22), and for the firmness, the CARS-MLR model had the best prediction ability (
<math id="M4"><msubsup><mrow><mi>R</mi></mrow><mrow><mi>P</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msubsup></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=16848678&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=16848677&type=
3.72533321
3.38666677
=0.83, RMSEP=1.67, RPD=2.47). The PLS-DA model had the best detection ability, and the maturity discrimination accuracy was up to 100%. These results can provide important guidance for the nondestructive prediction of the quality and maturity of fruits.
张承 , 李 明 , 龙友华 , 等 . 采前喷施壳聚糖复合膜对猕猴桃软腐病的防控及其保鲜作用 [J]. 食品科学 , 2016 , 37 ( 22 ): 274 - 281 .
ZHANG CH , LI M , LONG Y H , et al . Control of soft rot of kiwifruit by pre-harvest application of chitosan composite film and tis effect on quality-improving and fresh-keeping of fruit [J]. Food Science , 2016 , 37 ( 22 ): 274 - 281 . (in Chinese)
程丽娟 , 刘贵珊 , 万国玲 , 等 . 可见/近红外高光谱成像技术对长枣中葡萄糖含量的无损检测 [J]. 发光学报 , 2019 , 40 ( 8 ): 1055 - 1063 .
CHENG L J , LIU G S , WAN G L , et al . Non-destructive detective of glucose contect in lingwu jujube by Vis /NIR hyperspectral imaging technology [J]. Chinese Journal of Luminescence , 2019 , 40 ( 8 ): 1055 - 1063 . (in Chinese)
郭文川 , 王铭海 , 谷静思 , 等 . 近红外光谱结合极限学习机识别贮藏期的损伤猕猴桃 [J]. 光学 精密工程 , 2013 , 21 ( 10 ): 2720 - 2727 .
GUO W CH , WANG M H , GU J S , et al . Nondestructive detection on firmness of peaches based on hyperspectral imaging and artificial neural networks [J]. Opt. Precision Eng. , 2013 , 21 ( 10 ): 2720 - 2727 . (in Chinese)
邵园园 , 王永贤 , 玄冠涛 , 等 . 高光谱成像的猕猴桃货架期快速预测 [J]. 光谱学与光谱分析 , 2020 , 40 ( 6 ): 1940 - 1946 .
SHAO Y Y , WANG Y X , XUAN G T , et al . Hyperspectral imaging technique for estimating the shelf-life of kiwifruits [J]. Spectroscopy and Spectral Analysis , 2020 , 40 ( 6 ): 1940 - 1946 . (in Chinese)
刘燕德 , 马奎荣 , 孙旭东 , 等 . 梨和苹果糖度在线检测通用数学模型研究 [J]. 光谱学与光谱分析 , 2017 , 37 ( 7 ): 2177 - 2183 .
LIU Y D , MA K R , SUN X D , et al . The fruits soluble solids content detection online using universal mathematical model [J]. Spectroscopy and Spectral Analysis , 2017 , 37 ( 7 ): 2177 - 2183 . (in Chinese)
HU W , SUN D , BLASCO J . Rapid monitoring 1-MCP-induced modulation of sugars accumulation in ripening ‘hayward’ kiwifruit by Vis/NIR hyperspectral imaging [J]. Postharvest Biology and Technology , 2017 , 125 : 168 - 180 .
MA T , LI X , INAGAKI T , et al . Noncontact evaluation of soluble solids content in apples by near-infrared hyperspectral imaging [J]. Journal of Food Engineering , 2018 , 224 : 53 - 61 .
ZHANG D , XU L , WANG Q , et al . The optimal local model selection for robust and fast evaluation of soluble solid content in melon with thick peel and large size by VIS-NIR spectroscopy [J]. Food Analytical Methods , 2018 , 12 : 136 - 147 .
XIE C , CHU B , HE Y . Prediction of banana color and firmness using a novel wavelengths selection method of hyperspectral imaging [J]. Food Chemistry , 2018 , 245 : 132 - 140 .
YU X , LU H , WU D . Development of deep learning method for predicting firmness and soluble solid content of postharvest korla fragrant pear using VIS/NIR hyperspectral reflectance imaging [J]. Postharvest Biology and Technology , 2018 , 141 : 39 - 49 .
ZHANG D , ZHAN B , PAN F , et al . Determination of soluble solids content in oranges using visible and near infrared full transmittance hyperspectral imaging with comparative analysis of models [J]. Postharvest Biology and Technology , 2020 , 163 : 1 - 9 .
ZHAO Y , ZHANG C , ZHU S , et al . Shape induced reflectance correction for non-destructive determination and visualization of soluble solids content in winter jujubes using hyperspectral imaging in two different spectral ranges [J]. Postharvest Biology and Technology , 2020 , 161 : 1 - 11 .
董金磊 , 郭文川 . 采后猕猴桃可溶性固形物含量的高光谱无损检测 [J]. 食品科学 , 2015 , 36 ( 16 ): 101 - 106 .
DONG J L , GUO W CH . Nondestructive detection of soluble solid content of postharvest kiwifruits based on hyperspectral imaging technology [J]. Food Science , 2015 , 36 ( 16 ): 101 - 106 . (in Chinese)
詹白勺 , 倪君辉 , 李 军 . 高光谱技术结合CARS算法的库尔勒香梨可溶性固形物定量测定 [J]. 光谱学与光谱分析 , 2014 , 34 ( 10 ): 2752 - 2757 .
ZHAN B SH , NI J H , LI J . Hyperspectral technology combined with CARS algorithm to quantitatively determine the SSC in korla fragrant pear [J]. Spectroscopy and Spectral Analysis , 2014 , 34 ( 10 ): 2752 - 2757 . (in Chinese)
郭文川 , 董金磊 . 高光谱成像结合人工神经网络无损检测桃的硬度 [J]. 光学 精密工程 , 2015 , 23 ( 6 ): 1530 - 1537 .
GUO W CH , DONG J L . Nondestructive detection on firmness of peaches based on hyperspectral imaging and artificial neural networks [J]. Opt. Precision Eng. , 2015 , 23 ( 6 ): 1530 - 1537 . (in Chinese) .
冯 迪 , 纪建伟 , 张 莉 , 等 . 基于高光谱成像提取苹果糖度与硬度最佳波长 [J]. 发光学报 , 2017 , 38 ( 6 ): 799 - 806 .
FENG D , JI J W , ZHANG L , et al . Optimal wavelengths extraction of apple brix and firmness based on hyperspectral imaging [J]. Chinese Journal of Luminescence , 2017 , 38 ( 6 ): 799 - 806 . (in Chinese)
NICOLAÏ B , BEULLENS K , BOBELYN E , et al . Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review [J]. Postharvest Biology and Technology , 2007 , 46 ( 2 ): 99 - 118 .
GALVÀO R K H , ARAUJO M C U , JOSÉ G E , et al . A method for calibration and validation subset partitioning [J]. Talanta , 2005 , 67 ( 4 ): 736 - 740 .
倪力军 , 张立国 . 基础化学计量学及其应用 [M]. 上海 : 华东理工大学出版社 , 2011 .
NI L J , ZHANG L G . Basic Chemometrics and Its Application [M]. Shanghai : East China University of Science and Technology Press , 2011 . (in Chinese)
0
Views
520
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution