1.中国科学院 空天信息创新研究院, 北京 100094
2.中国科学院大学 航空宇航学院, 北京 101408
3.中国科学院 力学研究所, 北京 100190
扫 描 看 全 文
Lu-yu WANG, Yu-qiong LI, Rong CAI. Noise suppression of tilt-to-length coupling in space laser interferometer. [J]. Optics and Precision Engineering 29(7):1491-1498(2021)
Lu-yu WANG, Yu-qiong LI, Rong CAI. Noise suppression of tilt-to-length coupling in space laser interferometer. [J]. Optics and Precision Engineering 29(7):1491-1498(2021) DOI: 10.37188/OPE.20212907.1491.
在“太极计划”中由卫星抖动引起的光程倾斜(tilt-to-length, TTL)耦合噪声是影响激光干涉测量精度的第二大噪声源,为保证测量精度,该噪声要≤±25 µm/rad@±300 µrad。基于费马原理设计了由双凸透镜组成的成像系统,仿真分析了该成像系统对于TTL耦合噪声的抑制效果,搭建物理实验平台验证了该成像系统抑制TTL耦合噪声的有效性。仿真结果表明:加入双凸透镜成像系统后,TTL耦合噪声≤±10 µm/rad@±300 µrad;实验结果表明:加入双凸透镜成像系统后,TTL耦合噪声≤±15 µm/rad@±300 µrad,均满足“太极计划”对光程倾斜耦合噪声抑制水平的要求,且整个干涉光路易于调控、测量精度高。通过搭建物理实验平台验证了TTL耦合噪声的抑制效果,为“太极计划”激光干涉测量奠定了物理实验基础。
In the Taiji mission, the tilt-to-length (TTL) coupling noise caused by satellite jitter is the second largest noise source that affects the accuracy of the laser interferometer. In order to ensure measurement accuracy, it is necessary to suppress this noise to ≤ ±25 µm/rad@±300 µrad. Based on Fermat's principle, an imaging system composed of biconvex lenses was designed, and the effect of the imaging system on suppressing TTL coupling noise was simulated and analyzed. A physical experiment platform was built to verify the effectiveness of the imaging system in suppressing TTL coupling noise. The simulation results showed that the TTL coupling noise was ≤ ±10 µm/rad@±300 µrad after the biconvex lens imaging system was added; the experimental results showed that the TTL coupling noise was ≤ ±15 µm/rad@±300 µrad after the biconvex lens imaging system was added. These results satisfied the requirements of the Taiji mission in terms of the level of TTL coupling noise. Moreover, the entire interference optical path was easy to control, and high measurement accuracy was achieved. The suppression effect of TTL coupling noise was verified by buliding a physical experiment platform, which laid the foundation for physics experiments of the Taiji mission laser interferometer.
激光干涉测量:引力波探测太极计划空间激光干涉仪光程倾斜耦合噪声
laser interference measurementgravitational-wave observationTaiji missionlaser interferometer in spacetilt-to-length coupling noise
HU W R, WU Y L. The Taiji program in space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5): 685-686.
JIN G. Program in space detection of gravitational wave in Chinese Academy of Sciences[J]. Journal of Physics: Conference Series, 2017, 840:012009.
刘志国, 朴云松, 乔从丰. 多波段引力波宇宙研究和空间太极计划[J]. 现代物理知识, 2016, 28(5): 28-33.
LIU ZH G, PIAO Y S, QIAO C F. Multi-band gravitational wave cosmic research and the Taiji program of space [J]. Modern Physics, 2016, 28(5): 28-33.(in Chinese)
王林斗, 王加新, 邢文烈, 等. 具有隔离器功能的激光干涉仪的研究[J]. 光学 精密工程, 2004, 12(5): 465-470.
WANG L D, WANG J X, XING W L, et al. Laser interferometer with isolator function[J]. Opt. Precision Eng., 2004, 12(5): 465-470.(in Chinese)
李玉琼, 王璐钰, 王晨昱. 面向空间引力波探测的弱光探测器性能检测与分析[J]. 光学 精密工程, 2019, 27(8): 1710-1718.
LI Y Q, WANG L Y, WANG CH Y. Preliminary test of performance detection and analysis of weak-light detector for space gravitational wave detection[J]. Opt. Precision Eng., 2019, 27(8): 1710-1718.(in Chinese)
姚东, 李钰鹏, 赵亚, 等. 适用于光黏工艺的干涉仪公差保证方法[J]. 光学 精密工程, 2018, 26(8): 1945-1953.
YAO D, LI Y P, ZHAO Y, et al. Tolerance assurance of interferometer for optical HCB process[J]. Opt. Precision Eng., 2018, 26(8): 1945-1953.(in Chinese)
罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展, 2013, 43(4): 415-447.
LUO Z R, BAI SH, BIAN X, et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4): 415-447.(in Chinese)
PITKIN M, REID S, ROWAN S, et al. Gravitational wave detection by interferometry (ground and space)[J]. Living Reviews in Relativity, 2011, 14(1): 1-75.
LI Y Q, LUO Z R, LIU H S, et al. Laser interferometer for space gravitational waves detection and earth gravity mapping[J]. Microgravity Science and Technology, 2018, 30(6): 817-829.
CHWALLA M, DANZMANN K, BARRANCO G F, et al. Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling[J]. Classical & Quantum Gravity, 2016, 33(24):245015.
SCHUSTER S, WANNER G, TROBS M, et al. Vanishing tilt-to-length coupling for a singular case in two-beam laser interferometers with Gaussian beams[J]. Applied Optics, 2015, 54:1-8.
SCHUSTER S, TRÖBS M, WANNER G, et al. Experimental demonstration of reduced tilt-to-length coupling by a two-lens imaging system[J]. Optics Express, 2016, 24(10): 10466-10475.
TROBS M, CHWALLA M, DANZMANN K, et al. Experimental demonstration of reduced tilt-to-length coupling by using imaging systems in precision interferometers[C]. International Conference on Space Optics, 2016,10562(1056245):1-9.
TROBS M, SCHUSTER S, LIASER M, et al. Reducing tilt-to-length coupling for the LISA test mass interferometer[J]. Classical and Quantum Gravity, 2018, 35(10):105001.
ZHAO Y, WANG Z, LI Y, et al. Method to remove tilt-to-length coupling caused by interference of flat-top beam and Gaussian beam[J]. Applied Sciences, 2019, 9(19):4112.
WANG Z, YU T, ZHAO Y, et al. Research on telescope TTL coupling noise in intersatellite laser interferometry[J]. Photonic Sensors, 2020, 10(3): 265-274.
CHWALLA M, DANZMANN K, ÁLVAREZ M D, et al. Optical suppression of tilt-to-length coupling in the LISA long-arm interferometer[J]. Physical Review Applied, 2020, 14(1):1-11.
SCHUSTER S. Investigation of the Coupling Between Beam Tilt and Longitudinal Pathlength Signal in Laser Interferometers[D]. Germany: Gottfried Wilhelm Leibniz Universität Hannover, 2013.
韩军, 刘钧. 工程光学[M]. 北京: 国防工业出版社, 2012.
HAN J, LIU J. Engineering Optics [M]. Beijing: National Defense Industry Press, 2012.(in Chinese)
董玉辉. 面向空间激光干涉引力波探测的精密指向和弱光锁相控制技术的研究[D].北京:中国科学院力学研究所,2015.
DONG Y H. Inter-satellite Interferometry:Fine Pointing and Weak-light Phase-locking Techniques for Space Gravitational Wave Observatory[D]. Beijing: Institute of Mechanics, Chinese Academy of Sciences, 2015. (in Chinese)
0
Views
252
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution