1.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2.中国科学院大学,北京 100049
扫 描 看 全 文
Yi MAN, Qing-yun YANG, Tao CHEN. Extinction correction fitting for photometric measurement of space targets. [J]. Optics and Precision Engineering 29(7):1511-1517(2021)
Yi MAN, Qing-yun YANG, Tao CHEN. Extinction correction fitting for photometric measurement of space targets. [J]. Optics and Precision Engineering 29(7):1511-1517(2021) DOI: 10.37188/OPE.20212907.1511.
为了提高光度测量的精度进而提高反演空间目标的姿态、形状等特性的准确率,提出了消光修正拟合的光度测量方法。传统的光度测量是利用一些已知星等恒星的灰度值计算零等星灰度值,然后再通过待测目标的灰度值计算出待测目标的星等值,在此过程中加入经典大气消光模型所带来的影响。先是利用实测数据对光度测量计算过程中的消光修正进行拟合,充分考虑实际测量时大气消光所带来的影响,获取更符合实际情况的光度测量数据。然后,在零等星灰度标定的过程中采取迭代的方法计算零等星灰度的均值,降低大气不稳定所带来的异常数据对于测量结果的影响。实验结果表明:改进优化后光度测量方法的精度可以达到0.11个星等。相对于以往的光度测量方法测量精度更高,测量结果可以更好地应用于后续的反演工作。
To improve the accuracy of photometric measurements and the attitude and shape inversion of space targets, a photometric measurement method entailing extinction coefficient fitting was proposed based on existing measurement methods. In conventional photometric measurement methods, the gray value corresponding to a “0” magnitude was calculated using the gray values of stars whose magnitude was known; then, the magnitude of targets was calculated using their gray values while considering the effect of atmospheric extinction. In this study, more accurate photometric measurement data was obtained using the extinction-correction fitting method, based on actual measured data. Then, to reduce the impact of anomalous data due to atmospheric instabilities, the method of obtaining the iteration mean was used for calibrating the gray value corresponding to 0 magnitude. Experimental results indicate that the error of the improved photometric measurement method is approximately 0.11 magnitude. Compared with previous photometric measurement methods, this improved photometric measurement method has a higher degree of precision, and the measured results can be better applied to subsequent inversion work.
光度测量空间目标大气消光迭代均值法
photometric measurementspace objectiveatmospheric extinctioniteration mean method
宋奕辰, 徐小涛, 宋文婷. 国内外卫星移动通信系统发展现状综述[J]. 电信快报, 2019(8): 37-41.
SONG Y CH, XU X T, SONG W T. Overview of the development of satellite mobile communication systems at home and abroad[J]. Telecommunications Information, 2019(8): 37-41.(in Chinese)
田大鹏, 邵晓鹏. 航空光学成像与测量技术新进展[J]. 光学 精密工程, 2020, 28(6): 1221-1225.
TIAN D P, SHAO X P. New emerging technologies in airborne optical imaging and measurement[J]. Optics and Precision Engineering, 2020, 28(6): 1221-1225.(in Chinese)
刘艳亮, 张海平, 徐彦田, 等. 全球卫星导航系统的现状与进展[J]. 导航定位学报, 2019, 7(1): 18-21, 27.
LIU Y L, ZHANG H P, XU Y T, et al. Development status and trend of global navigation satellite system[J]. Journal of Navigation and Positioning, 2019, 7(1): 18-21, 27.(in Chinese)
WANG Y, DU X P. Big data analysis of the relevance of shape and function of global geostationary satellites[C]. Proceedings of 2017 IEEE 8th International Conference on Software Engineering and Service Science, IEEE,2017:183-186
高世杰, 吴佳彬, 刘永凯, 等. 微小卫星激光通信系统发展现状与趋势[J]. 中国光学, 2020, 13(6): 1171-1181.
GAO SH J, WU J B, LIU Y K, et al. Development status and trend of micro-satellite laser communication systems[J]. Chinese Optics, 2020, 13(6): 1171-1181.(in Chinese)
李宗凌, 汪路元, 禹霁阳, 等. 空间碎片目标在轨实时监测处理方法[J]. 航天器工程, 2019, 28(6): 58-64.
LI Z L, WANG L Y, YU J Y, et al. On-orbit real time monitoring and processing method for space debris target[J]. Spacecraft Engineering, 2019, 28(6): 58-64.(in Chinese)
LINARES R, FURFARO R, REDDY V. Space objects classification via light-curve measurements using deep convolutional neural networks[J]. The Journal of the Astronautical Sciences, 2020, 67(3): 1063-1091.
高扬, 赵金宇, 刘俊池, 等. 中高轨道目标的地基光电监视[J]. 光学 精密工程, 2017, 25(10): 2584-2590.
GAO Y, ZHAO J Y, LIU J CH, et al. Ground-based photoelectric surveillance for mid-high orbit target[J]. Optics and Precision Engineering, 2017, 25(10): 2584-2590.(in Chinese)
荆楠, 李创, 钟培峰, 等. 光度数据反演临近空间低速点目标形状尺寸信息[J]. 光学 精密工程, 2017, 25(7): 1738-1747.
JING N, LI CH, ZHONG P F, et al. Inversion of low dynamic vehicle shape and dimension information using non-resolved photometric data in near space[J]. Optics and Precision Engineering, 2017, 25(7): 1738-1747.(in Chinese)
CAPUANO V, KIM K, HARVARD A, et al. Monocular-based pose determination of uncooperative space objects[J]. Acta Astronautica, 2020, 166: 493-506.
续敏, 王建立, 王建军. 实时比对法用于卫星星等测量及其精度评估[J]. 光学技术, 2007, 33(3): 473-475.
XU M, WANG J L, WANG J J. Application of real time comparison to measuring satellite magnitude and it's precision evaluating[J]. Optical Technique, 2007, 33(3): 473-475.(in Chinese)
魏敏, 陈海宁, 叶斌, 等. 用CCD进行空间目标光度测量方法的研究[C].第十九届测控、计量、仪器仪表学术年会(MCMI’2009)论文集. 桂林, 2009: 429-431.
WEI M, CHEN H N, YE B, et al. Photometric measurement methods of space targets use CCD[C]. Proceedings of the 19th Annual Conference on Measurement and Control, Measurement, Instrumentation, MCMI,2009:424-426. (in Chinese)
魏敏, 魏维. 基于CCD的空间目标光度测量方法研究[J]. 半导体光电, 2012, 33(5): 752-755.
WEI M, WEI W. Research on photometric measurement of space targets using CCD[J]. Semiconductor Optoelectronics, 2012, 33(5): 752-755.(in Chinese)
王飞翔, 郭杰, 许方宇, 等. 不同海拔地区红外大气透过率的计算和测量[J]. 中国光学, 2019, 12(4): 844-853.
WANG F X, GUO J, XU F Y, et al. Calculation and measurement of infrared atmospheric transmittance at different altitudes[J]. Chinese Optics, 2019, 12(4): 844-853.(in Chinese)
马昌, 李密, 薛文鹏. 基于均值迭代法的稳态数据处理方法[J]. 航空科学技术, 2016, 27(7): 48-52.
MA CH, LI M, XUE W P. Method of steady state data processing based on mean iteration[J]. Aeronautical Science & Technology, 2016, 27(7): 48-52.(in Chinese)
董振铭. 恒星视星等的影响因素分析和其在天文仪器上的应用[J]. 内蒙古科技与经济, 2019(24): 74-76.
DONG ZH M. Analysis of the influencing factors of stellar apparent magnitude and its application in astronomical instruments [J]. Inner Mongolia Science Technology & Economy, 2019(24): 74-76.(in Chinese)
0
Views
90
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution