1.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2.中国科学院大学,北京 100049
3.中国科学院 大学材料与光电研究中心,北京 100049
扫 描 看 全 文
Yun PAN, Yi LI, Chang-xiang YAN. Error distribution for TDLAS carbon monoxide concentration measurement system. [J]. Optics and Precision Engineering 29(7):1539-1548(2021)
Yun PAN, Yi LI, Chang-xiang YAN. Error distribution for TDLAS carbon monoxide concentration measurement system. [J]. Optics and Precision Engineering 29(7):1539-1548(2021) DOI: 10.37188/OPE.20212907.1539.
在利用可调谐二极管激光吸收光谱技术测量一氧化碳(CO)气体浓度时,反演精度受光强、温度、压强等的影响,需要对系统的总体误差进行分析与分配。为了提高TDLAS的测量精度,降低多项误差对测量的影响,本文提出了对系统各个测量误差的分配方法。首先建立了CO浓度反演的误差模型,基于二次谐波测量原理引入了二次谐波峰值、光强、驱动电流、温度、压强和光程几项误差;其次,利用随机化方法分别研究了系统各项误差对浓度误差的影响,并通过数值拟合的方法推导了浓度误差与各项误差的关系,比较了浓度误差对各项误差变化的灵敏度;最后,根据求得的灵敏度关系,综合考虑浓度测量要求以及现有器件的工艺水平,对各项误差进行了合理、有效的分配。利用蒙特卡洛法对本文所提出的各项误差分配方案进行了仿真,仿真结果表明,在CO体积分数为2.5%时,该误差分配方案可使浓度测量的绝对误差小于0.025%。在实验室条件下对体积分数为2.5%的CO进行了测量,其绝对误差小于0.01%,实现了对CO气体浓度的高精度反演。本文的研究结果保证了TDLAS浓度检测系统在多项误差影响下的测量精度,同时,可有效降低系统的设计难度和经济成本,对仪器的开发和应用具有重要的指导意义。
The inversion accuracy of carbon monoxide (CO) concentration measurement using tunable diode laser absorption spectroscopy (TDLAS) technology is affected by various measurement errors, such as those pertaining to laser intensity, temperature, and pressure. To improve the measurement accuracy of TDLAS and reduce the influence of multiple errors on measurements, an error distribution method for each measurement error was proposed. First, an error model for CO concentration inversion was established. It included common error terms such as the peak value of the second harmonic, laser intensity, driving current, temperature, pressure, and optical path, based on the second harmonic measurement principle. Second, the influence of various error sources on the measured concentrations was studied separately using a randomized numerical fitting method, enabling the relationship between the concentration error and each error to be derived and the sensitivity of the concentration error to each error to be compared. Lastly, the various errors were effectively distributed by considering the sensitivity relationships, concentration measurement requirements, available devices, and technical complexity. Simulation of the error distribution scheme was performed using the Monte Carlo method. The simulation results show that when the gas volume fraction is 2.5%, the absolute error of concentration measurement is less than 0.025% under the error distribution scheme. Experiments to measure CO with a volume fraction of 2.5% show that the absolute error is less than 0.01%, demonstrating the high inversion accuracy inversion of CO concentration measurement. The results of this research show that the proposed error distribution method ensures high measurement accuracy for a TDLAS concentration detection system under the influence of multiple errors. In addition, the method can effectively decrease the design difficulty and cost of the systems, which is significant for the development and application of such instruments.
可调谐二极管激光吸收光谱一氧化碳(CO)浓度反演误差分配蒙特卡洛法
tunable diode laser absorption spectroscopy (TDLAS)carbon monoxide (CO)concentration inversionerror distributionMonte Carlo method
孙亦鹏, 曹红加, 张清峰. 电厂烟气CO检测技术的应用[J]. 电站系统工程, 2012, 28(6): 41-43.
SUN Y P, CAO H J, ZHANG Q F. Application of CO detection technology in power plant flue gas[J]. Power System Engineering, 2012, 28(6): 41-43.(in Chinese)
容銮恩,袁镇福,刘志敏,等.电站锅炉原理[M].北京:中国电力出版社,2007.
RONG L E, YUAN ZH F, LIU ZH M, et al. Utility Boiler Principle [M]. Beijing:China Electric Power Press, 2007. (in Chinese)
张晨浩, 苏胜, 常寿兵, 等. 基于尾部烟道CO在线监测的锅炉燃烧优化[J]. 燃烧科学与技术, 2019, 25(4): 347-352.
ZHANG CH H, SU SH, CHANG SH B, et al. Boiler combustion optimization based on online monitoring of CO in flue gas[J]. Journal of Combustion Science and Technology, 2019, 25(4): 347-352.(in Chinese)
张志荣, 孙鹏帅, 庞涛, 等. 激光吸收光谱技术在工业生产过程及安全预警标识性气体监测中的应用[J]. 光学 精密工程, 2018, 26(8): 1925-1937.
ZHANG ZH R, SUN P SH, PANG T, et al. Application of laser absorption spectroscopy for identification gases in industrial production processes and early safety warning[J]. Optics and Precision Engineering, 2018, 26(8): 1925-1937.(in Chinese)
HOU C C, CHEN H M, ZHANG J C, et al. Near-infrared and mid-infrared semiconductor broadband light emitters[J]. Light: Science & Applications, 2018, 7(3): 17170.
MEI Y, WENG G E, ZHANG B P, et al. Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’[J]. Light: Science & Applications, 2017, 6(1): e16199.
GAO L, CHEN C, ZENG K, et al. Broadband, sensitive and spectrally distinctive SnS2 nanosheet/PbS colloidal quantum dot hybrid photodetector[J]. Light: Science & Applications, 2016, 5(7): e16126.
聂伟, 阚瑞峰, 杨晨光, 等. 可调谐二极管激光吸收光谱技术的应用研究进展[J]. 中国激光, 2018, 45(9): 0911001.
NIE W, KAN R F, YANG CH G, et al. Research progress on the application of tunable diode laser absorption spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911001.(in Chinese)
李明星, 陈兵, 阮俊, 等. 近海大尺度区域二氧化碳的激光在线探测技术[J]. 光学 精密工程, 2020, 28(7): 1424-1432.
LI M X, CHEN B, RUAN J, et al. On-line detection of carbon dioxide in large scale offshore by laser technology[J]. Optics and Precision Engineering, 2020, 28(7): 1424-1432.(in Chinese)
袁志国, 马修真, 刘晓楠, 等. 利用可调谐激光吸收光谱技术的柴油机排放温度测试研究[J]. 中国光学, 2020, 13(2): 281-289.
YUAN ZH G, MA X ZH, LIU X N, et al. Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology[J]. Chinese Optics, 2020, 13(2): 281-289.(in Chinese)
刘佩进, 王志新, 杨斌, 等. 结合吸收光谱与互相关法的燃气速度测量方法研究[J]. 光谱学与光谱分析, 2017, 37(2): 532-536.
LIU P J, WANG ZH X, YANG B, et al. Research on measurement method of gas velocity combined absorption spectroscopy technique and cross-correlation[J]. Spectroscopy and Spectral Analysis, 2017, 37(2): 532-536.(in Chinese)
李玫仪, 王飞, 张雅琪. 基于中红外激光吸收光谱的低浓度一氧化氮测量[J]. 激光与光电子学进展, 2018, 55(5): 053002.
LI M Y, WANG F, ZHANG Y Q. Measurement of nitric oxide with low concentration based on mid-infrared laser absorption spectroscopy[J]. Laser & Optoelectronics Progress, 2018, 55(5): 053002.(in Chinese)
李传亮, 蒋利军, 邵李刚, 等. 基于TDLAS平衡差分技术的CO气体检测[J]. 光谱学与光谱分析, 2017, 37(10): 3165-3169.
LI CH L, JIANG L J, SHAO L G, et al. The detection of CO based on TDLAS combined with balanced difference detection technology[J]. Spectroscopy and Spectral Analysis, 2017, 37(10): 3165-3169.(in Chinese)
GOLDENSTEIN C S, SPEARRIN R M, JEFFRIES J B, et al. Infrared laser-absorption sensing for combustion gases[J]. Progress in Energy and Combustion Science, 2017, 60: 132-176.
李峥辉, 姚顺春, 卢伟业, 等. TDLAS测量CO2的温度影响修正方法研究[J]. 光谱学与光谱分析, 2018, 38(7): 2048-2053.
LI ZH H, YAO SH CH, LU W Y, et al. Study on temperature correction method of CO2 measurement by TDLAS[J]. Spectroscopy and Spectral Analysis, 2018, 38(7): 2048-2053.(in Chinese)
李金义, 樊鸿清, 田鑫丽, 等. 大气环境条件下波长调制光谱无标测量的压强修正[J]. 光谱学与光谱分析, 2020, 40(5): 1407-1412.
LI J Y, FAN H Q, TIAN X L, et al. Pressure correction for calibration-free measurement of wavelength modulation spectroscopy in atmospheric environment[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1407-1412.(in Chinese)
UPADHYAY A, WILSON D, LENGDEN M, et al. Calibration-free WMS using a cw-DFB-QCL, a VCSEL, and an edge-emitting DFB laser with in situ real-time laser parameter characterization[J]. IEEE Photonics Journal, 2017, 9(2): 1-17.
王振, 杜艳君, 丁艳军, 等. 基于波长调制-直接吸收光谱方法的CO分子1567 nm处谱线参数高精度标定[J]. 物理学报, 2020, 69(6): 064204.
WANG ZH, DU Y J, DING Y J, et al. High precision calibration of spectral parameters of CO at 1567 nm based on wavelength modulation-direct absorption spectroscopy[J]. Acta Physica Sinica, 2020, 69(6): 064204.(in Chinese)
ROY A, CHAKRABORTY A L. Intensity modulation-normalized calibration-free 1f and 2f wavelength modulation spectroscopy[J]. IEEE Sensors Journal, 2020, 20(21): 12691-12701.
YANG C G, MEI L, DENG H, et al. Wavelength modulation spectroscopy by employing the first harmonic phase angle method[J].Optics Express, 2019, 27(9): 12137-12146.
ROTHMAN L S, GORDON I E, BARBE A, et al. The HITRAN 2008 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(9/10): 533-572.
SUN J C, CHANG J, WANG F P, et al. Tuning efficiency of distributed feedback laser diode for wavelength modulation spectroscopy[J]. IEEE Sensors Journal, 2019, 19(21): 9722-9727.
ARNDT R. Analytical line shapes for lorentzian signals broadened by modulation[J]. Journal of Applied Physics, 1965, 36(8): 2522-2524.
LI H, RIEKER G B, LIU X, et al. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases[J]. Applied Optics, 2006, 45(5): 1052-1061.
肖双满. 高精度示波器模块硬件电路设计[D]. 成都: 电子科技大学, 2019.
XIAO SH M. Hardware Circuit Design of High Precision Oscilloscope Module[D]. Chengdu: University of Electronic Science and Technology of China, 2019. (in Chinese)
匡知群, 李立春, 杨威, 等. 锅炉烟道系统振动分析及改造研究[J]. 锅炉制造, 2012(1): 15-20.
KUANG ZH Q, LI L CH, YANG W, et al. Vibration analysis and retrofit research for a boiler flue system[J]. Boiler Manufacturing, 2012(1): 15-20.(in Chinese)
徐力智, 颜昌翔, 李颐, 等. 航空摆扫成像像移计算与误差分配[J]. 光学 精密工程, 2019, 27(10): 2071-2079.
XU L ZH, YAN CH X, LI Y, et al. Image motion calculation and error distribution for aerial whisk-broom imaging[J]. Optics and Precision Engineering, 2019, 27(10): 2071-2079.(in Chinese)
0
Views
182
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution