浏览全部资源
扫码关注微信
1.复旦大学 工程与应用技术研究院,上海 200433
2.中国科学院 苏州生物医学工程技术研究所,江苏 苏州 215163
3.中国科学院 生物医学检验技术重点实验室,江苏 苏州 215163
4.季华实验室,广东 佛山 528200
5.中国科学技术大学,安徽 合肥 230026
6.苏州国科芯感医疗科技有限公司,江苏 苏州 215163
Received:02 March 2021,
Revised:12 March 2021,
Published:15 August 2021
移动端阅览
付博文,郭振,俞鹏飞等.含微透镜的零模波导器件用于增强荧光信号强度[J].光学精密工程,2021,29(08):1921-1930.
FU Bo-wen,GUO Zhen,YU Peng-fei,et al.Zero-mode waveguide device with microlens for enhancing fluorescence signal intensity[J].Optics and Precision Engineering,2021,29(08):1921-1930.
付博文,郭振,俞鹏飞等.含微透镜的零模波导器件用于增强荧光信号强度[J].光学精密工程,2021,29(08):1921-1930. DOI: 10.37188/OPE.20212908.1921.
FU Bo-wen,GUO Zhen,YU Peng-fei,et al.Zero-mode waveguide device with microlens for enhancing fluorescence signal intensity[J].Optics and Precision Engineering,2021,29(08):1921-1930. DOI: 10.37188/OPE.20212908.1921.
本文设计并研制了一种改进的零模波导器件,采用此种器件实现了荧光信号的增强,解决了荧光串扰等问题。采用微纳加工手段实现了这一器件的制备,该器件通过微透镜与纳米孔的结合减少了荧光的发散角,荧光的相长干涉增强了检测信号的强度。具体地,采用电子束光刻制备了直径可控的纳米孔阵列,结合紫外光刻及反应离子刻蚀实现了角度可调的微透镜阵列,并采用ImageJ读取荧光灰度值进行了信号比对。通过与未改进的零模波导器件相比,改进后的器件其荧光信号增强了14.5倍,信噪比提升了9倍。通过SEM表征,该器件的纳米孔直径为(100.3±4.9 )nm;微透镜倾角(21.1±0.7)°。改进的零模波导器件在增强了荧光信号的同时有效减少了荧光串扰的问题,相关研究对微弱荧光检测、荧光串扰等问题提供了一种可行的解决思路。
In this study, an improved zero-mode waveguide device is designed and developed. This device is used to enhance fluorescence signal intensity and eliminate fluorescence crosstalk. The device is fabricated using micro/nanofabrication technologies. It reduces the divergence angle of fluorescence through a combination of a microlens and nanopores; the constructive interference of fluorescence enhances the intensity of the detection signal. Specifically, electron beam lithography is used to prepare a nanohole array with a controllable diameter, and a microlens array with an adjustable angle is fabricated by combining ultraviolet lithography and reactive ion etching. ImageJ is used to read the fluorescence gray value for signal comparison. Compared with a standard zero-film waveguide device, the improved device increases the fluorescence signal intensity by 14.5 times and the signal-to-noise ratio by 9 times. As determined through SEM characterization, the nanopore diameter of the device is (100.3 ± 4.9) nm, and the inclination angle of the microlens is (21.1 ± 0.7)°. The improved zero-mode waveguide device can effectively mitigate fluorescence crosstalk while enhancing fluorescence signal intensity. Related research provides a feasible solution to the problems of weak fluorescence detection and fluorescence crosstalk.
KURMOO Y , HOOK A L , HARVEY D , et al . Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections [J]. Biomaterials science , 2020 , 8 ( 5 ): 1464 - 1477 .
IIZUKA R . Analysis and discovery of functional biomolecules using a combination of fluorescence microscopy and micro-and nano-devices for single-molecule detection [J]. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan , 2020 , 140 ( 11 ): 1299 - 1303 .
LARKIN J , HENLEY R Y , JADHAV V , et al . Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing [J]. Nature nanotechnology , 2017 , 12 ( 12 ): 1169 - 1175 .
BARULIN A , CLAUDE J B , PATRA S , et al . Deep Ultraviolet Plasmonic Enhancement of Single Protein Autofluorescence in Zero-Mode Waveguides [J]. Nano letters , 2019 , 19 ( 10 ): 7434 - 7442 .
AKKILIC N , GESCHWINDNER S , HÖÖK F . Single-molecule biosensors: Recent advances and applications [J]. Biosensors and Bioelectronics , 2020 , 151 : 111944 .
TAYLOR A B , ZIJLSTRA P . Single-molecule plasmon sensing: current status and future prospects [J]. ACS sensors , 2017 , 2 ( 8 ): 1103 - 1122 .
ARDUI S , AMEUR A , VERMEESCH J R , et al . Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics [J]. Nucleic acids research , 2018 , 46 ( 5 ): 2159 - 2168 .
KIM S H . TIRF-based single-molecule detection of the reca presynaptic filament dynamics [J]. Methods in enzymology , 2018 , 600 : 233 - 253 .
MIYAKE T , TANII T , SONOBE H , et al . Real-time imaging of single-molecule fluorescence with a zero-mode waveguide for the analysis of protein- protein interaction [J]. Analytical chemistry , 2008 , 80 ( 15 ): 6018 - 6022 .
YONG Y C , WANG Y Z , ZHONG J J . Nano-spectroscopic imaging of proteins with near-field scanning optical microscopy (NSOM) [J]. Current opinion in biotechnology , 2018 , 54 : 106 - 113 .
PATRA S , BAIBAKOV M , CLAUDE J B , et al . Surface passivation of zero-mode waveguide nanostructures: benchmarking protocols and fluorescent labels [J]. Scientific reports , 2020 , 10 ( 1 ): 1 - 10 .
GOLDSCHEN‐OHM M P , WHITE D S , KLENCHIN V A , et al . Observing single‐molecule dynamics at millimolar concentrations [J]. Angewandte Chemie , 2017 , 129 ( 9 ): 2439 - 2442 .
BAIBAKOV M , PATRA S , CLAUDE J B , et al . Extending single-molecule förster resonance energy transfer (FRET) range beyond 10 nanometers in zero-mode waveguides [J]. ACS nano , 2019 , 13 ( 7 ): 8469 - 8480 .
ZAMBRANA-PUYALTO X , PONZELLINI P , MACCAFERRI N , et al . A hybrid metal-dielectric zero mode waveguide for enhanced single molecule detection [J]. Chemical Communications , 2019 , 55 ( 65 ): 9725 - 9728 .
FU K , KWON S R , HAN D , et al . Single entity electrochemistry in nanopore electrode arrays: ion transport meets electron transfer in confined geometries [J]. Accounts of chemical research , 2020 , 53 ( 4 ): 719 - 728 .
LEVENE M J , KORLACH J , TURNER S W , et al . Zero-mode waveguides for single-molecule analysis at high concentrations [J]. science , 2003 , 299 ( 5607 ): 682 - 686 .
周平 , 王泽红 , 韩晓龙 , 等 . 超薄石英片精密加工胶结固持变形 [J]. 光学 精密工程 , 2019 , 27 ( 11 ): 2402 - 2409 .
ZHOU P , WANG Z H , HAN X L , et al . Adhesive Mounting Deformation of Ultra-thin Quartz Workpiece in Precision Machining [J]. Opt. Precision Eng. , 2019 , 27 ( 11 ): 2402 - 2409 . (in Chinese)
ZHAO J , BRANAGAN S P , BOHN P W . Single-molecule enzyme dynamics of monomeric sarcosine oxidase in a gold-based zero-mode waveguide [J]. Applied spectroscopy , 2012 , 66 ( 2 ): 163 - 169 .
CASTNER D G , RATNER B D . Biomedical surface science: Foundations to frontiers [J]. Surface Science , 2002 , 500 ( 1-3 ): 28 - 60 .
SAMIEE K T , FOQUET M , GUO L , et al . λ-repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides [J]. Biophysical journal , 2005 , 88 ( 3 ): 2145 - 2153 .
HSIEH C F , LAI S C , CHEN C T , et al . Improved fabrication of zero-mode waveguides for monitoring specific molecular dynamics in living cells [J]. International Society for Optics and Photonics , 2012 , 8231 : 82310W .
丁涛 , 杨冬娇 , 刘介珍 , 等 . 含微棱柱阵列结构表面的注射成型脱模 [J]. 光学 精密工程 , 2020 , 28 ( 11 ): 2466 - 2477 .
DING T , YANG D J , LIU J ZH , et al . Demolding deformation of surface micro-prism array structure part based on injection molding [J]. Opt. Precision Eng. , 2020 , 28 ( 11 ): 2466 - 2477 . (in Chinese)
WADA J , RYU S , ASANO Y , et al . Fabrication of zero-mode waveguide by ultraviolet nanoimprint lithography lift-off process [J]. Japanese Journal of Applied Physics , 2011 , 50 ( 6S ): 06 GK07.
TENG C H , LIONBERGER T A , ZHANG J , et al . Fabrication of nanoscale zero-mode waveguides using microlithography for single molecule sensing [J]. Nanotechnology , 2012 , 23 ( 45 ): 455301 .
舒成松 , 董浩 , 尹韶辉 , 等 . 高精度微结构玻璃光学元件阵列模压技术研究进展 [J]. 光学 精密工程 , 2020 , 28 ( 9 ): 1967 - 1985 .
SHU CH S , DONG H , YIN SH H , et al . Research progress of high precision micro structure glass optical element array molding technology [J]. Opt. Precision Eng. , 2020 , 28 ( 9 ): 1967 - 1985 . (in Chinese)
魏清泉 , 李运涛 , 任鲁风 , 等 . 零模波导原理、制备及其在单分子荧光检测中的应用 [J]. 生物技术进展 , 2015 , 5 ( 1 ): 10 - 21 .
WEI Q Q , LI Y T , REN L F , et al . Principle and preparation of zero mode waveguide and its application in single molecule fluorescence detection [J]. Current Biotechnology , 2015 , 5 ( 1 ): 10 - 21 . (in Chinese)
0
Views
1024
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution