MU Xiao-dong,BAI Kun,YOU Xuan-ang,et al.Remote sensing image feature extraction and classification based on contrastive learning method[J].Optics and Precision Engineering,2021,29(09):2222-2234.
MU Xiao-dong,BAI Kun,YOU Xuan-ang,et al.Remote sensing image feature extraction and classification based on contrastive learning method[J].Optics and Precision Engineering,2021,29(09):2222-2234. DOI: 10.37188/OPE.20212909.2222.
Remote sensing image feature extraction and classification based on contrastive learning method
To solve the problem of lack of labeled data in the feature extraction and classification from remote sensing images using deep learning, a simple contrastive learning method involving the use of an asymmetric predictor was proposed. First, the input image is enhanced using horizontal flipping, color jitter, and grayscale methods to obtain two related views of the same image. Subsequently, they are fed into the two branches of a Siamese network for feature extraction. Next, asymmetric predictors are used to transform the features, and the network is optimized by maximizing the similarity between them. Finally, a linear classifier is trained by fixing its parameters to complete the feature classification. When 20% of the labeled samples are used for fine-tuning in the four public remote sensing image datasets, NWPU-Resisc45, EuroSAT, UC Merced, and Siri-WHU, the classification accuracies of the experiments are 77.57%, 87.70%, 60.52%, and 65.83%, respectively. Our proposed method can effectively extract the high-level semantic features of remote sensing images without using data labels and has better performance than the ImageNet pre-trained model and the latest contrastive learning method SimSiam under the conditions of insufficient number of labeled samples.
YANG ZH , MU X D , WANG SH Y , et al . Scene classification of remote sensing images based on multiscale features fusion [J]. Opt. Precision Eng. , 2018 , 26 ( 12 ): 3099 - 3107 . (in Chinese) . doi: 10.3788/ope.20182612.3099 http://dx.doi.org/10.3788/ope.20182612.3099
PENATTI O A B , NOGUEIRA K , SANTOS J ADOS . Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? [C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) . 712,2015 , Boston, MA, USA . IEEE , 2015 : 44 - 51 . doi: 10.1109/cvprw.2015.7301382 http://dx.doi.org/10.1109/cvprw.2015.7301382
MARMANIS D , DATCU M , ESCH T , et al . Deep learning earth observation classification using ImageNet pretrained networks [J]. IEEE Geoscience and Remote Sensing Letters , 2016 , 13 ( 1 ): 105 - 109 . doi: 10.1109/lgrs.2015.2499239 http://dx.doi.org/10.1109/lgrs.2015.2499239
ZHANG R , ISOLA P , EFROS A A . Colorful image colorization [M]. Computer Vision-ECCV 2016. Cham : Springer International Publishing , 2016 : 649 - 666 . doi: 10.1007/978-3-319-46487-9_40 http://dx.doi.org/10.1007/978-3-319-46487-9_40
CHEN T , ZHAI X H , RITTER M , et al . Self-supervised GANs via auxiliary rotation loss [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 1520,2019 , Long Beach, CA, USA . IEEE , 2019 : 12146 - 12155 . doi: 10.1109/cvpr.2019.01243 http://dx.doi.org/10.1109/cvpr.2019.01243
CHEN T , KORNBLITH S , NOROUZI M , et al . A simple framework for contrastive learning of visual representations [EB/OL]. Arxiv Preprint Arxiv : 2002 . 05709 , 2020 . https://arxiv.org/abs/2002.05709v1 https://arxiv.org/abs/2002.05709v1
HE K M , FAN H Q , WU Y X , et al . Momentum contrast for unsupervised visual representation learning [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 1319,2020 , Seattle , WA , USA . IEEE , 2020 : 9726 - 9735 . doi: 10.1109/cvpr42600.2020.00975 http://dx.doi.org/10.1109/cvpr42600.2020.00975
Chen X , Fan H , Girshick R , et al . Improved baselines with momentum contrastive learning [EB/OL]. Arxiv Preprint Arxiv : 2003 , 04297 , 2020 . https://www.arxiv-vanity.com/papers/2003. 04297/ https://www.arxiv-vanity.com/papers/2003.04297/
Kalantidis Y , Sariyildiz M B , Pion N , et al . Hard negative mixing for contrastive learning [EB/OL]. Arxiv Preprint Arxiv : 2010 , 01028 , 2020 . https://arxiv.org/abs/2010.01028 https://arxiv.org/abs/2010.01028
LI T H , FAN L J , YUAN Y , et al . Information-preserving contrastive learning for self-supervised representations [EB/OL]. Arxiv Preprint Arxiv : 2012 . 09962 , 2020 . https://arxiv.org/abs/2012.09962v1 https://arxiv.org/abs/2012.09962v1
LIU H , ABBEEL P . Hybrid discriminative-generative training via contrastive learning [EB/OL]. Arxiv Preprint Arxiv : 2007 , 09070 , 2020 . https://arxiv.org/abs/2007.09070 https://arxiv.org/abs/2007.09070
Caron M , Misra I , Mairal J , et al . Unsupervised Learning of Visual Features By Contrasting Cluster Assignments [EB/OL]. Arxiv Preprint Arxiv : 2006 , 09882 , 2020 .
GRILL J , STRUB F , ALTCHE F , et al . Bootstrap your own latent-a new approach to self-supervised learning [J]. Advances in Neural Information Processing Systems , 2020 , 33 .
Chen X , He K . Exploring Simple Siamese Representation Learning [EB/OL]. Arxiv Preprint Arxiv : 2011 , 10566 2020. https://arxiv.org/abs/2011.10566 https://arxiv.org/abs/2011.10566
HE K M , ZHANG X Y , REN S Q , et al . Deep residual learning for image recognition [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . 2730,2016 , Las Vegas, NV, USA . IEEE , 2016 : 770 - 778 . doi: 10.1109/cvpr.2016.90 http://dx.doi.org/10.1109/cvpr.2016.90
CHEN W J , PU S L , XIE D , et al . Unsupervised image classification for deep representation learning [EB/OL]. Arxiv Preprint Arxiv : 2006 , 11480 , 2020 . https://arxiv.org/abs/2006.11480v1 https://arxiv.org/abs/2006.11480v1
ULYANOV D , VEDALDI A , LEMPITSKY V . Deep image prior [J]. International Journal of Computer Vision , 2020 , 128 ( 7 ): 1867 - 1888 . doi: 10.1007/s11263-020-01303-4 http://dx.doi.org/10.1007/s11263-020-01303-4
Zhu J , Li Y , Zhou SK . Aggregative Self-supervised Feature Learning [EB/OL]. Arxiv Preprint Arxiv : 2012 , 07477 2020. https://arxiv.org/abs/2012.07477 https://arxiv.org/abs/2012.07477
CHENG G , HAN J W , LU X Q . Remote sensing image scene classification: benchmark and state of the art [J]. Proceedings of the IEEE , 2017 , 105 ( 10 ): 1865 - 1883 . doi: 10.1109/jproc.2017.2675998 http://dx.doi.org/10.1109/jproc.2017.2675998
HELBER P , BISCHKE B , DENGEL A , et al . EuroSAT: a novel dataset and deep learning benchmark for land use and land cover classification [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2019 , 12 ( 7 ): 2217 - 2226 . doi: 10.1109/jstars.2019.2918242 http://dx.doi.org/10.1109/jstars.2019.2918242
ZOU Q , NI L H , ZHANG T , et al . Deep learning based feature selection for remote sensing scene classification [J]. IEEE Geoscience and Remote Sensing Letters , 2015 , 12 ( 11 ): 2321 - 2325 . doi: 10.1109/lgrs.2015.2475299 http://dx.doi.org/10.1109/lgrs.2015.2475299
ZHU Q Q , ZHONG Y F , ZHAO B , et al . Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery [J]. IEEE Geoscience and Remote Sensing Letters , 2016 , 13 ( 6 ): 747 - 751 . doi: 10.1109/lgrs.2015.2513443 http://dx.doi.org/10.1109/lgrs.2015.2513443
Kornblith S , Norouzi M , Lee H , et al . Similarity of Neural Network Representations Revisited [C]. Proceedings of the 36th International Conference on Machine Learning : Pmlr , 2019 : -3529 - 3519 .
Collaborative classification of hyperspectral and LiDAR data based on CNN-transformer
Hyperspectral images feature extraction and classification based on fractional differentiation
Lightweight deep global-local knowledge distillation network for hyperspectral image scene classification
Dense pedestrian detection algorithm in multi-branch non-anchor frame network
Application of SENet generative adversarial network in image semantics description
Related Author
WU Haibin
DAI Shiyu
WANG Aili
YUJI Iwahori
YU Xiaoyu
LIU Jing
LI Yang
LIU Yi
Related Institution
College of Electron and Information, University of Electronic Science and Technology of China,Zhongshan Institute
Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, College of Measurement and Control Technology and Communication Engineering, Harbin University of Science and Technology
Department of Computer Science, Chubu University
School of Electronic Engineering, Xi’an University of Posts and Telecommunications
School of Electronic Engineering, Xidian University