浏览全部资源
扫码关注微信
1.上海交通大学 电子信息与电气工程学院,上海 200240
2.上海交通大学 医疗机器人研究院,上海 200240
Received:05 March 2021,
Revised:30 June 2021,
Published:15 November 2021
移动端阅览
柴川页,颜国正,韩玎等.人工肛门括约肌夹持机构的设计与优化[J].光学精密工程,2021,29(11):2640-2648.
CHAI Chuan-ye,YAN Guo-zheng,HAN Ding,et al.Design and optimization of an artificial anal sphincter clamping mechanism[J].Optics and Precision Engineering,2021,29(11):2640-2648.
柴川页,颜国正,韩玎等.人工肛门括约肌夹持机构的设计与优化[J].光学精密工程,2021,29(11):2640-2648. DOI: 10.37188/OPE.20212911.2640.
CHAI Chuan-ye,YAN Guo-zheng,HAN Ding,et al.Design and optimization of an artificial anal sphincter clamping mechanism[J].Optics and Precision Engineering,2021,29(11):2640-2648. DOI: 10.37188/OPE.20212911.2640.
针对现有人工肛门括约肌夹持机构存在生物相容性低、响应时间长的缺点,本文基于排便机制及力学特点,设计了一种新型封闭连杆式人工肛门括约肌(Novel Closed-link Artificial Anal Sphincter,NCAAS)的夹持机构。NCAAS夹持机构由基于沟槽凸轮摆杆的传动机构的三组交错叠放的夹持臂组成。为研究生物相容性与响应时间,本文根据虚功原理推导夹持臂的夹持力方程,并通过有限元分析夹持臂与肠道的力学特性。仿真所得机构控便时最大夹持力为1.6 N,肛肠角为62.2°~95.2°,满足人体日常控便需求。所制得NCAAS原型机质量55.19 g、高度42.7 mm、机构总长度不大于68.2 mm,平均响应时长为7.25 s。本文还通过猪大肠离体实验验证了NCAAS夹持肠道的生物相容性,最终控便量达700 g、肛肠角小于90°。NCAAS小型轻巧,生物相容性良好,响应时间较传统人工肛门括约肌大幅度缩短。
The existing artificial anal sphincter clamping mechanism has the disadvantages of low biocompatibility and long response time. Based on the defecation mechanism and physiological structure, this paper discusses the design of a Novel Closed-link Artificial Anal Sphincter (NCAAS) clamping mechanism. The NCAAS clamping mechanism consists of three sets of interlaced clamping arms and a transmission mechanism based on groove cam swing rods. To study its biocompatibility and response time, the clamping force equation of the clamping arm was derived from the principle of virtual work, and the processing of the finite element in instantaneous dynamic simulation. During simulated stool control, the maximum clamping force of the NCAAS is 1.6 N, and the anorectal angle is in the range of 62.2°~95.2°, which meets the demands of human daily stool control mass. The weight of the NCAAS prototype is 55.19 g, with a height of 42.7 mm and length of 68.2 mm. The response time of the improved system is 7.25 s. An in vitro experiment with a pig colon verified the biocompatibility of the NCAAS, which draws the result of a 700 g controlled stool mass at an anorectal angle of less than 90°. The NCAAS is small and light, with better biocompatibility and a response time that is significantly shorter than that of traditional artificial anal sphincters.
ZHOU Z R , YAN G Z , WANG Z W , et al . Inhibition of hyperplasia during the implantation of the puborectalis-like artificial anal sphincter [J]. The International Journal of Artificial Organs , 2020 , 43 ( 7 ): 482 - 493 . doi: 10.1177/0391398819900187 http://dx.doi.org/10.1177/0391398819900187
CHRISTIANSEN J , LORENTZEN M . Implantation of artificial sphincter for anal incontinence [J]. The Lancet , 1987 , 330 ( 8553 ): 244 - 245 . doi: 10.1016/s0140-6736(87)90829-4 http://dx.doi.org/10.1016/s0140-6736(87)90829-4
FATTORINI E , BRUSA T , GINGERT C , et al . Artificial muscle devices: innovations and prospects for fecal incontinence treatment [J]. Annals of Biomedical Engineering , 2016 , 44 ( 5 ): 1355 - 1369 . doi: 10.1007/s10439-016-1572-z http://dx.doi.org/10.1007/s10439-016-1572-z
舒晶 , 颜德田 , 颜国正 . 生物反馈式括约肌的研制 [J]. 光学 精密工程 , 2004 , 12 ( 1 ): 43 - 46 . doi: 10.3321/j.issn:1004-924X.2004.01.009 http://dx.doi.org/10.3321/j.issn:1004-924X.2004.01.009
SHU J , YAN D T , YAN G ZH . Development of constrictor with bio-feedback function [J]. Opt. Precision Eng. , 2004 , 12 ( 1 ): 43 - 46 . (in Chinese) . doi: 10.3321/j.issn:1004-924X.2004.01.009 http://dx.doi.org/10.3321/j.issn:1004-924X.2004.01.009
BAUMGARTNER U . Technique of anal band implantation for fecal incontinence [J]. Coloproctology , 2020 , 42 ( 5 ): 392 - 399 . doi: 10.1007/s00053-020-00489-y http://dx.doi.org/10.1007/s00053-020-00489-y
OSGOUEI R H , MARECHAL L , KONTOVOUNISIOS C , et al . Soft pneumatic actuator for rendering anal sphincter tone [J]. IEEE Transactions on Haptics , 2020 , 13 ( 1 ): 183 - 190 . doi: 10.1109/toh.2020.2968446 http://dx.doi.org/10.1109/toh.2020.2968446
PAKRAVAN F , HELMES C , ALLDINGER I . Magnetic sphincter augmentation in patients with fecal incontinence after failure of an implanted artificial bowel sphincter [J]. coloproctology , 2018 , 40 ( 2 ): 127 - 129 . doi: 10.1007/s00053-018-0241-0 http://dx.doi.org/10.1007/s00053-018-0241-0
WILT A AVAN DER , BREUKINK S O , STURKENBOOM R , et al . The artificial bowel sphincter in the treatment of fecal incontinence, long-term complications [J]. Diseases of the Colon and Rectum , 2020 , 63 ( 8 ): 1134 - 1141 . doi: 10.1097/dcr.0000000000001683 http://dx.doi.org/10.1097/dcr.0000000000001683
MARZIALE L , LUCARINI G , MAZZOCCHI T , et al . Comparative analysis of occlusion methods for artificial sphincters [J]. Artificial Organs , 2020 , 44 ( 9 ): 995 - 1005 . doi: 10.1111/aor.13684 http://dx.doi.org/10.1111/aor.13684
ZAN P , DING Q , YANG B H , et al . Design of an actuator for artificial anal sphincter based on finite element analysis [C]. 2020 12th International Conference on Advanced Computational Intelligence (ICACI). 1416,2020 , Dali, China. IEEE , 2020 : 98 - 101 . doi: 10.1109/icaci49185.2020.9177706 http://dx.doi.org/10.1109/icaci49185.2020.9177706
ZHOU Z R , YAN G Z , WANG Z W , et al . Design and evaluation of puborectalis-like artificial anal sphincter that replicates rectal perception [J]. Artificial Organs , 2020 , 44 ( 7 ): E300 - E312 . doi: 10.1111/aor.13645 http://dx.doi.org/10.1111/aor.13645
WANG M H , YU H L . The study for constant force characteristic of C-shaped superelastic SMA [J]. International Journal of Applied Electromagnetics and Mechanics , 2020 , 64 ( 1/2/3/4 ): 1253 - 1259 . doi: 10.3233/jae-209443 http://dx.doi.org/10.3233/jae-209443
AMAE S , WADA M , LUO Y , et al . Development of an implantable artificial anal sphincter by the use of the shape memory alloy [J]. ASAIO Journal (American Society for Artificial Internal Organs , 2001 , 47 ( 4 ): 346 - 350 . doi: 10.1097/00002480-200107000-00010 http://dx.doi.org/10.1097/00002480-200107000-00010
KE L , YAN G Z , LIU H , et al . A novel artificial anal sphincter system in an in vitro and in vivo experiment [J]. The International Journal of Artificial Organs , 2014 , 37 ( 3 ): 253 - 263 . doi: 10.5301/ijao.5000312 http://dx.doi.org/10.5301/ijao.5000312
LIAO D H , MARK E B , ZHAO J B , et al . Modeling and measurements of the mechanophysiological function of the gastrointestinal organs [J]. Physiological Measurement , 2020 , 41 ( 11 ): 114004 . doi: 10.1088/1361-6579/abc40a http://dx.doi.org/10.1088/1361-6579/abc40a
STOKES W E , JAYNE D G , ALAZMANI A , et al . A biomechanical model of the human defecatory system to investigate mechanisms of continence [J]. Proceedings of the Institution of Mechanical Engineers Part H , Journal of Engineering in Medicine, 2019 , 233 ( 1 ): 114 - 126 . doi: 10.1177/0954411918756453 http://dx.doi.org/10.1177/0954411918756453
YANG P J , LAMARCA M , KAMINSKI C , et al . Hydrodynamics of defecation [J]. Soft Matter , 2017 , 13 ( 29 ): 4960 - 4970 . doi: 10.1039/c6sm02795d http://dx.doi.org/10.1039/c6sm02795d
GregersenHans , 樊艳华 , 王虹, 窦艳玲主. doi: 10.15385/yb.miracle.2006 http://dx.doi.org/10.15385/yb.miracle.2006
译 . 胃肠生物力学: 胃肠动力新视角 [M]. 北京 : 人民卫生出版社 , 2006 . doi: 10.15385/yb.miracle.2006 http://dx.doi.org/10.15385/yb.miracle.2006
GREGERSEN H , FAN Y H , WANG H , Dou Y L main translator . Biomechanics of the gastrointestinal tract Biomechanics of the gastrointestinal tract [M]. Beijing : People's Medical Publishing House , 2006 . (in Chinese) . doi: 10.15385/yb.miracle.2006 http://dx.doi.org/10.15385/yb.miracle.2006
艾辽元 , 葛书晨 , 许晶晶 , 等 . 大肠组织端端吻合的有限元建模与分析 [J]. 医用生物力学 , 2017 , 32 ( 4 ): 342 - 347 . doi: 10.16156/j.1004-7220.2017.04.008 http://dx.doi.org/10.16156/j.1004-7220.2017.04.008
AI L Y , GE SH CH , XU J J , et al . Finite element modeling and analysis on end-to-end anastomosis of the large intestine [J]. Journal of Medical Biomechanics , 2017 , 32 ( 4 ): 342 - 347 . (in Chinese) . doi: 10.16156/j.1004-7220.2017.04.008 http://dx.doi.org/10.16156/j.1004-7220.2017.04.008
汪炜 , 颜国正 , 王志武 , 等 . 肠道机器人扩张机构设计与优化 [J]. 光学 精密工程 , 2017 , 25 ( 7 ): 1815 - 1824 . doi: 10.3788/OPE.20172507.1815 http://dx.doi.org/10.3788/OPE.20172507.1815
WANG W , YAN G ZH , WANG ZH W , et al . Design and optimization of expanding mechanism of intestinal robot [J]. Opt. Precision Eng. , 2017 , 25 ( 7 ): 1815 - 1824 . (in Chinese) . doi: 10.3788/OPE.20172507.1815 http://dx.doi.org/10.3788/OPE.20172507.1815
HAN D , YAN G Z , WANG Z W , et al . The modelling, analysis, and experimental validation of a novel micro-robot for diagnosis of intestinal diseases [J]. Micromachines , 2020 , 11 ( 10 ): 896 . doi: 10.3390/mi11100896 http://dx.doi.org/10.3390/mi11100896
0
Views
1169
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution