FENG Yan-ru,WANG Yi-bin.Dehazing using a decomposition-composition and recurrent refinement network based on the physical imaging model[J].Optics and Precision Engineering,2021,29(11):2692-2702.
FENG Yan-ru,WANG Yi-bin.Dehazing using a decomposition-composition and recurrent refinement network based on the physical imaging model[J].Optics and Precision Engineering,2021,29(11):2692-2702. DOI: 10.37188/OPE.20212911.2692.
Dehazing using a decomposition-composition and recurrent refinement network based on the physical imaging model
To explore the dehazing priors and constraints among the physical parameters during imaging under haze conditions and improve dehazing accuracy, we propose a decomposition–composition and recurrent refinement network based on the physical imaging model for image dehazing. Unlike existing dehazing methods, it contains a transmission prediction branch and a clear image prediction branch. Both branches are built based on the multi-scale pyramid encoder–decoder network with a recurrent unit that can utilize multiscale contextual features and has more complete information exchange. Considering the transmission map is related to the scene depth and haze concentration, the transmission map can be regarded as a haze concentration prior and guide the clear image prediction branch to estimate and refine the dehazing result recurrently. Similarly, the clear image that contains the scene depth information is regarded as a depth prior and guides the transmission map prediction branch to predict and refine the transmission map. Then, the predicted transmission map and clear image are further synthesized as the haze image that serves as the input of the network in each recurrent step, enabling the predicted transmission map and clear image to meet the constraints of the physical imaging model. The experimental results demonstrate that our method not only achieves a good dehazing effect on both synthetic and real images, but also outperforms existing methods in terms of quality and quantity. The average processing time for a single hazy image is 0.037 s, indicating that it has potential application value in the engineering practice of image dehazing.
HAN H N , QIAN F , LÜ J W , et al . Aerial image dehazing using improved dark channel prior [J]. Opt. Precision Eng. , 2020 , 28 ( 6 ): 1387 - 1394 . (in Chinese) . doi: 10.3788/ope.20202806.1387 http://dx.doi.org/10.3788/ope.20202806.1387
HE K M , SUN J , TANG X O . Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011 , 33 ( 12 ): 2341 - 2353 . doi: 10.1109/tpami.2010.168 http://dx.doi.org/10.1109/tpami.2010.168
FATTAL R . Dehazing using color-lines [J]. ACM Transactions on Graphics , 2014 , 34 ( 1 ): 1 - 14 . doi: 10.1145/2651362 http://dx.doi.org/10.1145/2651362
MENG G F , WANG Y , DUAN J Y , et al . Efficient image dehazing with boundary constraint and contextual regularization [C]. 2013 IEEE International Conference on Computer Vision . 18,2013 , Sydney, NSW, Australia . IEEE , 2013 : 617 - 624 . doi: 10.1109/iccv.2013.82 http://dx.doi.org/10.1109/iccv.2013.82
YOON I , JEONG S , JEONG J , et al . Wavelength-adaptive dehazing using histogram merging-based classification for UAV images [J]. Sensors (Basel) , 2015 , 15 ( 3 ): 6633 - 6651 . doi: 10.3390/s150306633 http://dx.doi.org/10.3390/s150306633
ZHANG H , PATEL V M . Densely connected pyramid dehazing network [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . 1823,2018 , Salt Lake City, UT, USA . IEEE , 2018 : 3194 - 3203 . doi: 10.1109/cvpr.2018.00337 http://dx.doi.org/10.1109/cvpr.2018.00337
YIN , WANG , YANG . A novel residual dense pyramid network for image dehazing [J]. Entropy , 2019 , 21 ( 11 ): 1123 . doi: 10.3390/e21111123 http://dx.doi.org/10.3390/e21111123
CHEN D D , HE M M , FAN Q N , et al . Gated context aggregation network for image dehazing and deraining [C]. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). 711,2019 , Waikoloa, HI, USA. IEEE , 2019 : 1375 - 1383 . doi: 10.1109/wacv.2019.00151 http://dx.doi.org/10.1109/wacv.2019.00151
SHAO Y J , LI L , REN W Q , et al . Domain adaptation for image dehazing [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1319,2020 , Seattle, WA, USA. IEEE , 2020 : 2805 - 2814 . doi: 10.1109/cvpr42600.2020.00288 http://dx.doi.org/10.1109/cvpr42600.2020.00288
YIN S B , WANG Y B , YANG Y H . A novel image-dehazing network with a parallel attention block [J]. Pattern Recognition , 2020 , 102 : 107255 . doi: 10.1016/j.patcog.2020.107255 http://dx.doi.org/10.1016/j.patcog.2020.107255
ZHOU Z W , WANG CH Y , XU L . Design and application of image captioning algorithm based on fusion gate neural network [J]. Opt. Precision Eng. , 2021 , 29 ( 4 ): 906 - 915 . (in Chinese) . doi: 10.37188/OPE.20212904.0906 http://dx.doi.org/10.37188/OPE.20212904.0906
SANG H W , ZHOU Q H , ZHAO Y . PCANet: Pyramid convolutional attention network for semantic segmentation [J]. Image and Vision Computing , 2020 , 103 : 103997 . doi: 10.1016/j.imavis.2020.103997 http://dx.doi.org/10.1016/j.imavis.2020.103997
XU SH J , OUYANG P Y , GUO X Y , et al . Building segmentation in remote sensing image based on multiscale-feature fusion dilated convolution resnet [J]. Opt. Precision Eng. , 2020 , 28 ( 7 ): 1588 - 1599 . (in Chinese) . doi: 10.37188/ope.20202807.1588 http://dx.doi.org/10.37188/ope.20202807.1588
JU M R , LUO H B , LIU G Q , et al . Infrared dim and small target detection network based on spatial attention mechanism [J]. Opt. Precision Eng. , 2021 , 29 ( 4 ): 843 - 853 . (in Chinese) . doi: 10.37188/OPE.20212904.0843 http://dx.doi.org/10.37188/OPE.20212904.0843
LI B Y , REN W Q , FU D P , et al . Benchmarking single-image dehazing and beyond [J]. IEEE Transactions on Image Processing , 2019 , 28 ( 1 ): 492 - 505 . doi: 10.1109/tip.2018.2867951 http://dx.doi.org/10.1109/tip.2018.2867951
YAO T T , LIANG Y , LIU X M , et al . Video dehazing algorithm via haze-line prior with spatiotemporal correlation constraint [J]. Journal of Electronics & Information Technology , 2020 , 42 ( 11 ): 2796 - 2804 . (in Chinese) . doi: 10.11999/JEIT190403 http://dx.doi.org/10.11999/JEIT190403