LI Meng-xia,CAO Bo,LU Jia-wei,et al.Fast phase unwrapping algorithm based on region segmenting with mathematical morphology[J].Optics and Precision Engineering,2021,29(11):2724-2733.
LI Meng-xia,CAO Bo,LU Jia-wei,et al.Fast phase unwrapping algorithm based on region segmenting with mathematical morphology[J].Optics and Precision Engineering,2021,29(11):2724-2733. DOI: 10.37188/OPE.20212911.2724.
Fast phase unwrapping algorithm based on region segmenting with mathematical morphology
The key step of optical interferometry is phase unwrapping, which is expected to be computationally fast, highly precise, and widely applicable. According to the feature of wrapped phase that between different order fringes there are significant edges
a fast unwrapping algorithm based on region segmenting with mathematical morphology(RSMM) is proposed. First, mathematical morphology is applied to extract the boundaries and segment regions from the phase map. Then
phase differences between adjacent regions are calculated in order to determine the phase order and elevated quantity of each region
and so are phases of the pixels on boundaries. Finally, wrapped phases in regions and boundaries are elevated individually according to the quantified elevation to obtain the unwrapped phase map. Simulations and experiments indicate that RSMM requires less than 1 second to unwrap and generate a phase map for 1 000×1 000 pixels, and this required time is less than a quarter of the computation time of conventional least-square algorithms. In addition, the phase unwrapping performance is not influenced by phase boundary, data dropout, and noise. The RSMM algorithm has the advantages of high speed, broad adaptability, and high accuracy and is promising for measurement applications with a commanding requirement for computation speed, such as dynamic interferometry, optical holography, and fringe projecting profilometry.
DAI M L , YANG F J , HE X Y . Three-dimensional shape measurement of objects with discontinuities by dual-frequency color fringe projection [J]. Opt. Precision Eng. , 2013 , 21 ( 1 ): 7 - 12 . (in Chinese) . doi: 10.3788/OPE.20132101.0007 http://dx.doi.org/10.3788/OPE.20132101.0007
DING M J , XI J T , LI G X , et al . Denoising method for shape measurement based on three wavelength phase shift profilometry [J]. Opt. Precision Eng. , 2017 , 25 ( 10 s): 297 - 303 . (in Chinese) . doi: 10.1007/978-3-319-69877-9_10 http://dx.doi.org/10.1007/978-3-319-69877-9_10
LIU Q , LI L L , ZHANG H , et al . Simultaneous dual-wavelength phase-shifting interferometry for surface topography measurement [J]. Optics and Lasers in Engineering , 2020 , 124 : 105813 . doi: 10.1016/j.optlaseng.2019.105813 http://dx.doi.org/10.1016/j.optlaseng.2019.105813
LIU Q , LI L L , HUANG X J , et al . Hierarchical phase unwrapping for dual-wavelength digital holographic microscopy [J]. Journal of Optics , 2020 , 22 ( 4 ): 045701 . doi: 10.1088/2040-8986/ab76a6 http://dx.doi.org/10.1088/2040-8986/ab76a6
ITOH K . Analysis of the phase unwrapping algorithm [J]. Applied Optics , 1982 , 21 ( 14 ): 2470 . doi: 10.1364/ao.21.002470 http://dx.doi.org/10.1364/ao.21.002470
HAN Y , ZHANG Q C , WU Y SH . Performance comparison of three basic phase unwrapping algorithms and their hybrid algorithm [J]. Acta Optica Sinica , 2018 , 38 ( 8 ): 88 - 96 . (in Chinese) . doi: 10.3788/aos201838.0815006 http://dx.doi.org/10.3788/aos201838.0815006
ZHANG S , ZHONG H P , TANG J S . Dendriform branch cut algorithm based on minimum spanning tree for phase unwrapping [J]. Procedia Engineering , 2012 , 29 : 1154 - 1159 . doi: 10.1016/j.proeng.2012.01.104 http://dx.doi.org/10.1016/j.proeng.2012.01.104
DE SOUZA J C , OLIVEIRA M E , SANTOS P A MDOS . Branch-cut algorithm for optical phase unwrapping [J]. Optics Letters , 2015 , 40 ( 15 ): 3456 . doi: 10.1364/ol.40.003456 http://dx.doi.org/10.1364/ol.40.003456
SU X Y , CHEN W J . Reliability-guided phase unwrapping algorithm: a review [J]. Optics and Lasers in Engineering , 2004 , 42 ( 3 ): 245 - 261 . doi: 10.1016/j.optlaseng.2003.11.002 http://dx.doi.org/10.1016/j.optlaseng.2003.11.002
YAN L P , ZHANG H Y , ZHANG R , et al . A robust phase unwrapping algorithm based on reliability mask and weighted minimum least-squares method [J]. Optics and Lasers in Engineering , 2019 , 112 : 39 - 45 . doi: 10.1016/j.optlaseng.2018.08.024 http://dx.doi.org/10.1016/j.optlaseng.2018.08.024
GUO Y , CHEN X T . Study of improved phase unwrapping algorithm based on least squares [J]. Chinese Journal of Lasers , 2014 , 41 ( 5 ): 195 - 200 . (in Chinese) . doi: 10.3788/cjl201441.0508005 http://dx.doi.org/10.3788/cjl201441.0508005
ZHANG X L , ZHANG X C , XU M , et al . Phase unwrapping in digital holography based on non-subsampled contourlet transform [J]. Optics Communications , 2018 , 407 : 367 - 374 . doi: 10.1016/j.optcom.2017.09.057 http://dx.doi.org/10.1016/j.optcom.2017.09.057
LI L F , ZHANG X C , XIAO H , et al . Segmentation of non-stochastic surfaces based on non-subsampled contourlet transform and mathematical morphologies [J]. Measurement , 2016 , 79 : 137 - 146 . doi: 10.1016/j.measurement.2015.08.014 http://dx.doi.org/10.1016/j.measurement.2015.08.014
BLINDER D , OTTEVAERE H , MUNTEANU A , et al . Efficient multiscale phase unwrapping methodology with modulo wavelet transform [J]. Optics Express , 2016 , 24 ( 20 ): 23094 - 23108 . doi: 10.1364/oe.24.023094 http://dx.doi.org/10.1364/oe.24.023094
DENG J , LI J , FENG H , et al . Three-dimensional depth segmentation technique utilizing discontinuities of wrapped phase sequence [J]. Opt. Precision Eng. , 2019 , 27 ( 11 ): 2459 - 2466 . (in Chinese) . doi: 10.3788/ope.20192711.2459 http://dx.doi.org/10.3788/ope.20192711.2459
KEKOVIĆ G , SEKULIĆ S . Detection of change points in time series with moving average filters and wavelet transform: application to EEG signals [J]. Neurophysiology , 2019 , 51 ( 1 ): 2 - 8 . doi: 10.1007/s11062-019-09783-y http://dx.doi.org/10.1007/s11062-019-09783-y
ERKAN U , ENGINOĞLU S , THANH D N H , et al . Adaptive frequency median filter for the salt and pepper denoising problem [J]. IET Image Processing , 2020 , 14 ( 7 ): 1291 - 1302 . doi: 10.1049/iet-ipr.2019.0398 http://dx.doi.org/10.1049/iet-ipr.2019.0398
GONZALEZ R C , WOODS R E , EDDINS S L . Digital image processing using Matlab [M]. Second Edition . Beijing : Publishing house of electronics industry , 2014 , 205 - 210 . (in Chinese)